Preferred Language
Articles
/
jih-1009
The Maximum Complete (k,n)-Arcs in the Projective Plane PG(2,4) By Geometric Method

A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=pⁿ for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear.  A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc.  In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Complete (kn,n)-Arcs in The Projective Plane PG(2,11) by Geometric Method, with the Related Blocking Sets and Projective Codes

   In this paper,we construct complete (kn,n)-arcs in the projective plane PG(2,11),  n = 2,3,…,10,11  by geometric method, with the related blocking sets and projective codes.
 

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.

Crossref
View Publication Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Construction of Complete (k,n)-arcs in the Projective Plane PG(2,11) Over Galois Field GF(11), 3 ï‚£ n ï‚£ 11

        The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3 ï‚£ n ï‚£ 11.         A (k,n)-arcs is a set of k points no n + 1 of which are collinear.         A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc

View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Complete Arcs in Projective Plane PG (2,11) Over Galois field

    In this work, we construct complete (K, n)-arcs in the projective plane over Galois field GF (11), where 12 2 ≤ ≤ n  ,by using geometrical method (using the union of some maximum(k,2)- Arcs , we found (12,2)-arc, (19,3)-arc , (29,4)-arc, (38,5)-arc , (47,6)-arc, (58,7)-arc, (68,6)-arc, (81,9)-arc, (96,10)-arc, (109,11)-arc, (133,12)-arc, all of them are complete arc in PG(2, 11) over GF(11).  

View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
New sizes of complete (k, 4)-arcs in PG(2,17)

              In this paper, the packing problem for complete (  4)-arcs in  is partially solved. The minimum and the maximum sizes of complete (  4)-arcs in  are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in  and the algebraic characteristics of a plane quartic curve over the field  represented by the number of its rational points and inflexion points. In addition, some sizes of complete (  6)-arcs in the projective plane of order thirteen are established, namely for  = 53, 54, 55, 56.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of (k,3)-Arcs in PG(2,9) by Using Geometrical Method

  In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic.         We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(9)

  In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.

View Publication Preview PDF
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Classification and Construction of (k,3)-Arcs on Projective Plane Over Galois Field GF(7)

  The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs.         All of these arcs are incomplete.         The number of distinct (12,3)-arcs are six, two of them are complete.         There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete.         There exists one complete (15,3)-arc.
 

View Publication Preview PDF
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Minimal (b,t)-Blocking Sets Containing Conics in PG(2,5) with the Complete Arcs and Projective Codes Related with Them

A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.

View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
On the Size of Complete Arcs in Projective Space of Order 17

The main goal of this paper is to show that a
-arc in
and
is subset of a twisted cubic, that is, a normal rational curve. The maximum size of an arc in a projective space or equivalently the maximum length of a maximum distance separable linear code are classified. It is then shown that this maximum is
for all dimensions up to
.

View Publication Preview PDF