Preferred Language
Articles
/
jhcJVJIBVTCNdQwCuavy
SOME TYPES OF DELAY DIFFERENTIAL EQUATIONS SOLVED BY SUMUDU TRANSFORM METHOD

Crossref
View Publication
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Hille and Nehari Type Oscillation Criteria for Conformable Fractional Differential Equations

In this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.

Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions Of The Nonlocal Problems For The Diffusion Partial Differential Equations

    In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.

View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Wang-Ball Polynomials for the Numerical Solution of Singular Ordinary Differential Equations

This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

Crossref
View Publication Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Proving The Existence and the Uniqueness Solutions of fractional Integro- Differential Equations

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.

View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
New Iterative Method for Solving Nonlinear Equations

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

Crossref
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Pharmaceutical, Chemical And Biological Sciences
Review on: Vaginitis. A problem to be solved!!

Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in human body. Usually, the immune system keeps yeast under control. If the individual is sick or taking antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways including thrush is a yeast infection that causes white patches in oral cavity ,Candida esophagitis is thrush that spreads to esophagus, women can get vaginal yeast infections,(vaginitis) causing itchiness, pain and discharge, yeast infections of the skin cause itching and rashes ,yeast infections in bloodstream can be life-threatening . The current review article will concentrate on vaginal infection (vaginitis), project

... Show More
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Growth of Solutions of Nonhomogeneous Higher order Complex Linear Differential Equations

The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio

... Show More
Crossref
View Publication Preview PDF