The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.
In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show MorePopulation density represents an important indicator for determining the growth of the size of urban areas. Population density has a direct impact on the quality of life, and its excessive rise may lead to the deterioration of basic service facilities. The problem of the research is that the increase in the total population densities of the residential neighborhood may reflect negatively on the nature of the services provided to the residents in these shops, and thus the failure to achieve sustainability in the residential locality. The research assumes that the increase in population densities negatively affects the achievement of sustainability in the residential neighborhood.
... Show More
The utilization of targeted therapy for programmed death ligand 1 (PD‑L1) has emerged as a prominent focus in contemporary clinical trials, particularly in the context of immune checkpoint inhibitors. The prognostic significance of the expression of PD‑L1 in invasive mammary cancer remains a subject of discussion in clinical oncology, requiring further exploration, despite its recognition as a biomarker for responsiveness to anti‑PDL1 immunotherapy. The present study was conducted to investigate the immunohistological expression of PD‑L1 in women with triple‑negative breast cancer (TNBC), with a particular focus for searching for the associated clinical and pathological characteristics. The present retrospective study examined the
... Show MoreABSTRACT
Metal (II) complexes of Co, Ni, Cu and Zn with cefdinir C14H13N5O5S2 derivative (L) were synthesized and identification by elemental analysis CHNS Uv-Vis, FTIR, TGA, metal analysis AA, magnetic susceptibility and conduct metric measurement. by analysis the ligand behaves as a bidentate. For the cobalt complex, Tetrahedral geometry shape was suggested, while other complexes that have nickel, copper and zinc ions were proposed as octahedral geometry shape. The experimental method was studied for prevention of corrosion carbon steel in 3.5% NaCl by using a novel Cefdinir derivations drugs. The results showed that metal complex was a strong corro
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show More