In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-steps method depends, in estimation, on (OLS) method, which is sensitive for the existence of abnormality in data or contamination of error; robust methods have been proposed such as LAD & M to strengthen the two-steps method towards the abnormality and contamination of error. In this research imitating experiments have been performed, with verifying the performance of the traditional and robust methods for Local Linear kernel LLPK technique by using two criteria, for different sample sizes and disparity levels.
This paper deals with the Magnetohydrodynyamic (Mill)) flow for a viscoclastic fluid of the generalized Oldroyd-B model. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. Exact analytic solutions for the velocity and shear stress fields in terms of the Fox H-function are obtained by using discrete Laplace transform. The effect of different parameter that controlled the motion and shear stress equations are studied through plotting using the MATHEMATICA-8 software.
Free vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreThis paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.
This paper is concerned with introducing and studying the o-space by using out degree system (resp. i-space by using in degree system) which are the core concept in this paper. In addition, the m-lower approximations, the m-upper approximations and ospace and i-space. Furthermore, we introduce near supraopen (near supraclosed) d. g.'s. Finally, the supra-lower approximation, supraupper approximation, supra-accuracy are defined and some of its properties are investigated.
The simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreThe high and low water levels in Tigris River threaten the banks of the river. The study area is located on the main stream of Tigris River at Nu’maniyah City and the length of the considered reach is 5.4 km, especially the region from 400 m upstream Nu’maniyah Bridge and downstream of the bridge up to 1250 mwhich increased the risk ofthe problemthat itheading towardsthe streetand causingdanger tonearbyareas.
The aim of this research is to identify the reason of slope collapse and find proper treatments for erosion problem in the river banks with the least cost. The modeling approach consisted of several steps, the first of which is by using “mini” JET (Jet Erosion Test) d
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
The particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy