Preferred Language
Articles
/
jeasiq-798
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-steps method depends, in estimation, on (OLS) method, which is sensitive for the existence of abnormality in data or contamination of error; robust methods have been proposed such as LAD & M to strengthen the two-steps method towards the abnormality and contamination of error. In this research imitating experiments have been performed, with verifying the performance of the traditional and robust methods for Local Linear kernel LLPK technique by using two criteria, for different sample sizes and disparity levels.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation Age and Gender for General Census of the population in Iraq by using nonparametric Bayesian Kernel Estimators

The process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Some Estimator Methods of Linear Regression Model With Auto-Correlated Errors With Application Data for the Wheat in Iraq

This research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Multivariate data points in spatial statistics with application

This paper  deals  to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Optimum design of stiffened square plates for longitudinal and square ribs

For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results. 

View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of Time of Survival Rate by Using Clayton Function for the Exponential Distribution with Practical Application

Each phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
Scopus
View Publication
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Nelson-Olson Method and Two-Stage Limited Dependent Variables (2SLDV ) Method for the Estimation of a Simultaneous Equations System (Tobit Model)

This study relates to  the estimation of  a simultaneous equations system for the Tobit model where the dependent variables  ( )  are limited, and this will affect the method to choose the good estimator. So, we will use new estimations methods  different from the classical methods, which if used in such a case, will produce biased and inconsistent estimators which is (Nelson-Olson) method  and  Two- Stage limited dependent variables(2SLDV) method  to get of estimators that hold characteristics the good estimator .

That is , parameters will be estim

... Show More
Crossref
View Publication Preview PDF