Preferred Language
Articles
/
jeasiq-798
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-steps method depends, in estimation, on (OLS) method, which is sensitive for the existence of abnormality in data or contamination of error; robust methods have been proposed such as LAD & M to strengthen the two-steps method towards the abnormality and contamination of error. In this research imitating experiments have been performed, with verifying the performance of the traditional and robust methods for Local Linear kernel LLPK technique by using two criteria, for different sample sizes and disparity levels.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

Crossref
View Publication Preview PDF
Publication Date
Mon Apr 15 2019
Journal Name
Proceedings Of The International Conference On Information And Communication Technology
Scopus (24)
Crossref (22)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between Methods of Laplace Estimators and the Robust Huber for Estimate parameters logistic regression model

The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .                                                

The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result.    &nbs

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

Crossref (4)
Crossref
View Publication
Publication Date
Sat Sep 01 2018
Journal Name
2018 11th International Conference On Developments In Esystems Engineering (dese)
Scopus (17)
Crossref (6)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING OF TIME-VARYING ESTIMATION FOR DISCRETE SURVIVAL ANALYSIS FOR DIALYSIS PATIENTS IN BASRAH, IRAQ

Survival analysis is widely applied to data that described by the length of time until the occurrence of an event under interest such as death or other important events. The purpose of this paper is to use the dynamic methodology which provides a flexible method, especially in the analysis of discrete survival time, to estimate the effect of covariate variables through time in the survival analysis on dialysis patients with kidney failure until death occurs. Where the estimations process is completely based on the Bayes approach by using two estimation methods: the maximum A Posterior (MAP) involved with Iteratively Weighted Kalman Filter Smoothing (IWKFS) and in combination with the Expectation Maximization (EM) algorithm. While the other

... Show More
Scopus (1)
Scopus
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust estimation of multiple linear regression parameters in the presence of a problem of heterogeneity of variance and outliers values

Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Use aggregate slide estimate additive splines estimation for the diagnosis of non-linear composite model self-regression with practical application

Nonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines  estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property  to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Modeling and Forecasting Periodic Time Series data with Fourier Autoregressive Model

Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagn

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF