Preferred Language
Articles
/
jeasiq-648
The Philosophy of Organizational Forgetting In Frame of Learning and Organizational knowledge
...Show More Authors

current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational learning and knowledge, and thus contributing to the embodiment of its contents in our organizations Arabic, which is the latest gap caused the omission of one of the vital topics in the field of organization theory and organizational behavior. And then rising of necessity to exploring the hidden aspects of the topic, to The review search method adopted in the methodology through the analysis of the relevant literature through three chapters, the research found a set of conclusions and recommendations that can help the Arab Director in the adoption of this concept and considered it as business philosophy in managing of his organization

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (17)
Crossref (6)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Bahrain Medical Bulletin
Effectiveness of Instructional Program on Nurses’ Knowledge Concerning Palliative and Supportive Care for old Adults with Heart Failure
...Show More Authors

Abstract Background: The prevalence of heart failure (HF) continues to increase with an increase in the aging population. Palliative care should be integrated into routine disease management for all patients with serious illness, regardless of settings or prognosis. Objectives: The purposes of this study were to determine the level of knowledge of nurses concerning palliative care for patients with heart failure after implementation of instructional program. Design: The study was a quasi-experimental study and consists of 60 nurses. Setting: The study was conducted between17th November 2021, to 10th February 2022, at three teaching hospitals in Baghdad city, Iraq. Method: A non-probability (purposive) sample was utilized, nurses who agreed

... Show More
View Publication Preview PDF
Scopus (11)
Scopus
Publication Date
Thu Sep 12 2019
Journal Name
Al-kindy College Medical Journal
Knowledge, attitude and practice regarding osteoarthritis management among physicians of primary health care centers; Al-rusafa/ Baghdad/2017
...Show More Authors

Background:-Osteoarthritis (OA) is the most common form of arthritis and the leading source of physical disability in elderly people. The Prevalence of OA is increasing and will continue to do so as the population gets older. The OA is predominantly managed in primary care centers by primary health care physicians and much can be done to alleviate symptoms from osteoarthritis by combinations of therapeutic options including pharmacological and non-pharmacological treatments.

Objectives of study :- To assess the knowledge, attitude and practice of Iraqi PHCC physicians in Baghdad, AL-Rusafa, regarding the management of osteoarthritis patient, and it's association with sociodemogra

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (54)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
الأستاذ
Teaching-learning design according to constructivist theory models and its impact on the achievement of chemistry among second-year intermediate school female students
...Show More Authors

Preview PDF
Publication Date
Thu Mar 02 2023
Journal Name
Applied Sciences
Machine Learning Techniques to Detect a DDoS Attack in SDN: A Systematic Review
...Show More Authors

The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach

... Show More
View Publication Preview PDF
Scopus (99)
Crossref (91)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (19)
Crossref (12)
Scopus Crossref