current research aims to build an intellectual framework for concept of organizational forgetting, which is considered one of the most important topics in contemporary management thought, which is gain the consideration of most scholars and researchers in field of organizational behavior, which is to be a loss of intentional or unintentional knowledge of any organizational level. It turned out that just as organizations should learn and acquire knowledge, they must also forget, especially knowledge obsolete and worn out. And represented the research problem in the absence of Arab research dealing with organizational forgetting, and highlights the supporting infrastructure core, and show a close relationship with organizational learning and knowledge, and thus contributing to the embodiment of its contents in our organizations Arabic, which is the latest gap caused the omission of one of the vital topics in the field of organization theory and organizational behavior. And then rising of necessity to exploring the hidden aspects of the topic, to The review search method adopted in the methodology through the analysis of the relevant literature through three chapters, the research found a set of conclusions and recommendations that can help the Arab Director in the adoption of this concept and considered it as business philosophy in managing of his organization
Objectives: To determine the impact of an educational program on nurses’ knowledge
and practices concerning neurogenic bladder rehabilitation for spinal cord injured persons
through a follow-up approach each two months post program implementation for six
months.
Methodology: "Follow-up" longitudinal design by using time series approach of data
analysis and the application of pre-post tests approach for the study and the control
groups. The study was carried out at Ibn Al-Kuff hospital for (SCI) in Baghdad governorate
from 5th of July 2010 to 15th of October 2011. To achieve the objectives of the study, a
non-probability (purposive) sample of (60) nurses (males and females) were working in SCI
units were selec
Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThis research aims toknow the learning styles according to the model of Felder and Silverman and its relationship to effectively self- perceived mathematicalamong students of the Faculty of Education Pure Sciences - Ibn al-Haytham. By answering the following questions: 1. What are the preferred methods of learning among students in the mathematics department according to the model Felder and Silverman? 2. What is the mathematicalself-perceived levelof the students at the Department of Mathematics effectiveness level? 3. What is the relationship between learning styles according to the Felder model and Silverman and the effectiveness of mathematical self-perceived of the students of the Department of Mathematics? The research sample consiste
... Show MoreObjectives: To determine the effectiveness of the instructional program on patients’ knowledge about home safety while receiving anti-cancer treatment at Al- Karama Teaching Hospital in Al-Kut City.
Methodology: A quasi-experimental design is conducted through the application of a pre-test and post-test approach for the study and control groups from February 5th, 2020 to April 25th, 2020. A non–probability (purposive) sample of (50) patients treated at the Blood Disease and Oncology Center is selected and divided into two groups. Each group contains (25) patients as control and study groups. An instrument is constructed that is comprised of two parts; t
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Abstract
Objective(s): A descriptive study aimed to determine nurses' knowledge about chest physiotherapy techniques for patients with Corona virus disease and observe the relationship between nurses' knowledge and their socio-demographic characteristics.
Methodology: The study was directed in isolation units of Al- Hussein teaching hospitals in Thi-Qar, Iraq for the period from June 1st, 2022 to November 27th, 2022. Non- probability (purposively) sample comprised 41 nurses. A questionnaire was used for data collection and it consists of two parts: the first part comprises socio demographic features, the second part includes self- administered questionnaire sheet wa
... Show More