In this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed with a problem of heteroscdastic , passing through the phase estimation using the method of Maximum Likelihood Conditional and on the assumption that the random error is distributed normal distribution with the application on more than one rank for seasonal model, then determine the appropriate rank of the specimen using a variety of standards down to the prediction phase, it has been shown through the application on the study data stages that the best model for predicting volatility is SGARCH (1,0)(1,0).
Profit is a goal sought by all banks because it brings them income and guarantees them survival and continuity, and on the other hand, facing commitments without financial crisis. Hence the idea of research in his quest to build scientific tools and means that can help bank management in particular, investors, lenders and others to predict financial failure and to detect early financial failures. The research has produced a number of conclusions, the most important of which is that all Islamic banks sample a safe case of financial failure under the Altman model, while according to the Springate model all Islamic banks sample a search for a financial failure except the Islamic Bank of Noor Iraq for Investment and Finance )BINI(. A
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThe performa of evaluation process is a process that should be carried out by all industrial management in order to stand on aspects of development or underdevelopment of the various departments and activities in its industrial project for the purpose of identifying obstacles and find out the causes and then avoid them quickly. And intended to rectify the performance evaluation of the activities of industrial project or economic union by measuring the results achieved within a specific operational process and compare it to what is already targeted, and often the time for comparison of one year.
The process of performance evaluation depends upon several criteria and indicators within the
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreIn this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample
... Show MoreThe purpose of this research is to determine the extent to which independent auditors can audit the requirements of e-commerce related to (infrastructure requirements, legislation and regulations, tax laws, and finally human cadres). To achieve this, a questionnaire was designed for auditors. Numerous statistical methods, namely arithmetic mean and standard deviation, have been used through the implementation of the Statistical Packages for Social Sciences (SPSS) program.
The research has reached several results, the most important of which are: There are noobstacles to enabling the auditor to audit the application of the e-commerce requirements as well as the respective(infrastructure requirements, legislation and regulations, t
... Show MoreThe purpose of this paper is use the Dynamic Programming to solve a deterministic periodic review model for inventory problem and then to find the optimal policies that the company must uses in the purchase or production (in the practical application example the Al Aksa company purchase the generators from out side country).