In this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed with a problem of heteroscdastic , passing through the phase estimation using the method of Maximum Likelihood Conditional and on the assumption that the random error is distributed normal distribution with the application on more than one rank for seasonal model, then determine the appropriate rank of the specimen using a variety of standards down to the prediction phase, it has been shown through the application on the study data stages that the best model for predicting volatility is SGARCH (1,0)(1,0).
The purpose of this paper is use the Dynamic Programming to solve a deterministic periodic review model for inventory problem and then to find the optimal policies that the company must uses in the purchase or production (in the practical application example the Al Aksa company purchase the generators from out side country).
Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreThe analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.
The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.
In the analysis of d
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
This study aimed to identify the extent of teachers' application of professional standards from the point of view of supervisors and detecting differences in the means of their estimates that may be attributed to the variables of the study (sex, number of years of service, educational qualification).The study adopted a descriptive approach. In order to achieve the aims of the study, a questionnaire including four areas, namely: (professional features, academic knowledge and pedagogy, teaching and learning, and professional development) was constructed.
The questionnaire was applied to a population which consisted of 60 supervisors of all school subjects in the Directorates of Education in
... Show Moremethodology six sigma Help to reduce defects by solving problems effectively, and works Lean to reduce losses through the flow of the manufacturing process and when integrating these two methodologies (Lean and six sigma), the methodology of Lean six sigma will form the entrance to the organizers of the optimization process and increase the quality and reduce lead times and costs . by focusing on the needs of the customer. this process uses statistical tools and techniques to analyze and improve processes.
We have conducted this research in the General Company for Electrical Industries and adopted its product (machine cooling water three taps) as a sample for research. In order to determine t
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis paper introduces a relationship between the independence of polynomials associated with the links of the network, and the Jacobian determinant of these polynomials. Also, it presents a way to simplify a given communication network through an algorithm that splits the network into subnets and reintegrates them into a network that is a general representation or model of the studied network. This model is also represented through a combination of polynomial equations and uses Groebner bases to reach a new simplified network equivalent to the given network, which may make studying the ability to solve the problem of network coding less expensive and much easier.
We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show More