The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter of linear regression model, one Covariate at a Time Multiple Testing OCMT. Moreover, the Euclidian Distance has been used as a comparison criterion among the three methods
The aim of the research is to use the data content analysis technique (DEA) in evaluating the efficiency of the performance of the eight branches of the General Tax Authority, located in Baghdad, represented by Karrada, Karkh parties, Karkh Center, Dora, Bayaa, Kadhimiya, New Baghdad, Rusafa according to the determination of the inputs represented by the number of non-accountable taxpayers and according to the categories professions and commercial business, deduction, transfer of property ownership, real estate and tenders, In addition to determining the outputs according to the checklist that contains nine dimensions to assess the efficiency of the performance of the investigated branches by investing their available resources T
... Show MoreA condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
Statisticians often use regression models like parametric, nonparametric, and semi-parametric models to represent economic and social phenomena. These models explain the relationships between different variables in these phenomena. One of the parametric model techniques is conic projection regression. It helps to find the most important slopes for multidimensional data using prior information about the regression's parameters to estimate the most efficient estimator. R algorithms, written in the R language, simplify this complex method. These algorithms are based on quadratic programming, which makes the estimations more accurate.
In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
The study aimed at identifying the strategic gaps in the actual reality of the management of public organizations investigated to determine the strategy used based on the study model. The study relied on the variable of the general organization strategy in its dimensions (the general organization strategy, the organization's political strategy and the defense strategy of the organization) The sample of the study was (General Directorate of Traffic, Civil Status Directorate and Civil Defense Directorate), formations affiliated to the Ministry of the Interior, for the importance of the activity carried out by these public organizations by providing them In order to translate the answers into a quantitative expression in the analysi
... Show More   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: - 
 - Maximum Likelihood Method (MLE). 
 - Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreThis study aimed to investigate the role of Big Data in forecasting corporate bankruptcy and that is through a field analysis in the Saudi business environment, to test that relationship. The study found: that Big Data is a recently used variable in the business context and has multiple accounting effects and benefits. Among the benefits is forecasting and disclosing corporate financial failures and bankruptcies, which is based on three main elements for reporting and disclosing that, these elements are the firms’ internal control system, the external auditing, and financial analysts' forecasts. The study recommends: Since the greatest risk of Big Data is the slow adaptation of accountants and auditors to these technologies, wh
... Show More