A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others in most simulation scenarios according to the integrated mean square error and integrated classification error
Nosocomial infections (NIs) are hospital-acquired associated infections, and also contracted due to the infections or toxins that exist in some location, like hospital. Therefore in our study, 4 Lactic acid bacteria (LAB) isolates were obtained from dairy product (Lactobacillus brevis, L. acidophilus, Lactococcus raffinolactis and Lactococcus lactis) and were tested for Bacteriocin production to select Lactococcus lactis among them. Cell free supernatant (CFS), Lipid and partial purification of protein La. Lactis had high inhibitory effect against test pathogens (E. coli, Bacillus cereus, Staphylococcus aureus and Streptococcus). 30 isolates that diagnosed by Vitec, were isol
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreIn this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
Aspartate aminotransferase was purified from urine and serum of patients with type 2 diabetes in a 2 steps procedure involving dialysis bag and sephadex G-25 gel filtration (column chromatography). The enzyme was purified 346.23 fold with 1467% yield and 3.46 fold with 142.85% yield in urine and serum of patients with type 2 diabetes respectively. The purified enzyme showed single peak. The results of this study revealed that AST activity of type 2 diabetes urine and serum increased significantly (p<0.001) compared with control group.
Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Letters in Biomathematics · Jul 7, 2025Letters in Biomathematics · Jul 7, 2025 Show publication This paper, presents the application of the B-spline transform as an effective and precise technique for estimating key parameters i.e., drift, volatility, and jump intensity for Lévy processes. Lévy processes are powerful tools for representing phenomena with continuous trends with abrupt changes. The proposed approach is validated through a simulated biological case study on animal migration in which movements are mo
... Show MoreEmissions of particulate matter from nanopapers as well as inks and organic solvents during the printing operationand copying machines constitute a threat to human health, especially with long time exposure in closed working environments. The present study was conducted in some printing houses and copying centers of Baghdad city during February and April .The studyproved the occurrence of an air pollution problem concerning lead and zinc contents in all the study sites. The levels of Pb, Zn and Cu were collected by low volume sampler from the air of the study sites then filter papers digested and determined the heavy metals by flame atomic spectrophotometer. Particulate matter was measured by Aerocet, Microtector meter device was use
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreSome methods recommended abroad to control the oriental hornet, Vespa orientalis L., attacking the honey bee, Apis mellifera L., colonies were tested, with some modifications, for the first time under the Iraqi conditions. One of these methods was carried out by covering the hive entrance with a piece of queen excluder to prevent the hornet from entering the hive. Also, the position of hive stand was reversed to deprive the hornet from using the flight board as a stage for waiting and creeping toward the defending bees. The second method was carried out by fixing a cardboard cone as a bee passage at the hive entrance to hinder the entry of the hornet into the hive. Both of these methods were found to be unsuccessful to
... Show More