Preferred Language
Articles
/
jeasiq-2146
The Bayesian Estimation for The Shape Parameter of The Power Function Distribution (PFD-I) to Use Hyper Prior Functions
...Show More Authors

The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the Power Function Distribution (PFD-I) to estimate it. The conjugate prior function of the shape parameter θ was considered as a combination of two different prior distributions such as gamma distribution with Erlang distribution and Erlang distribution with exponential distribution and Erlang distribution with non-informative distribution and exponential distribution with the non-informative distribution. We derived Bayes estimators for shape parameter θ of the Power Function Distribution (PFD-I) according to different loss functions such as the squared error loss function (SELF), the weighted error loss function (WSELF) and modified linear exponential (MLINEX) loss function (MLF), with two different double priors. In addition to the classical estimation (maximum likelihood estimation). We used simulation to get the results of this study, for different cases of the shape parameter of the Power Function Distribution used to generate data for different samples sizes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation
...Show More Authors

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Four Level Prior Distributions
...Show More Authors

Abstract:

      In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
New White Method of Parameters and Reliability Estimation for Transmuted Power Function Distribution
...Show More Authors

        In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3)  of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Non Bayesian estimation for survival and hazard function of weighted Rayleigh distribution (b)
...Show More Authors

In this paper, we proposed a new class of Weighted Rayleigh Distribution based on two parameters, one is scale parameter and the other is shape parameter which introduced in Rayleigh distribution. The main properties of this class are derived and investigated in . The moment method and maximum likelihood method are used to obtain estimators of parameters, survival function and hazard function. Real data sets are collected to investigate two methods which depend it in this study. A comparison was made between two methods of estimation.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Best estimation for the Reliability of 2-parameter Weibull Distribution
...Show More Authors

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

View Publication Preview PDF
Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution
...Show More Authors

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of the Suggested loss Function with Generalized Loss Function for One Parameter Inverse Rayleigh Distribution
...Show More Authors

The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.

In this paper, some Bayesian estimators for the unknown scale parameter  of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of   estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste

... Show More
View Publication Preview PDF