Preferred Language
Articles
/
jeasiq-2146
The Bayesian Estimation for The Shape Parameter of The Power Function Distribution (PFD-I) to Use Hyper Prior Functions
...Show More Authors

The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the Power Function Distribution (PFD-I) to estimate it. The conjugate prior function of the shape parameter θ was considered as a combination of two different prior distributions such as gamma distribution with Erlang distribution and Erlang distribution with exponential distribution and Erlang distribution with non-informative distribution and exponential distribution with the non-informative distribution. We derived Bayes estimators for shape parameter θ of the Power Function Distribution (PFD-I) according to different loss functions such as the squared error loss function (SELF), the weighted error loss function (WSELF) and modified linear exponential (MLINEX) loss function (MLF), with two different double priors. In addition to the classical estimation (maximum likelihood estimation). We used simulation to get the results of this study, for different cases of the shape parameter of the Power Function Distribution used to generate data for different samples sizes.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Gulf Economist
The Bayesian Estimation in Competing Risks Analysis for Discrete Survival Data under Dynamic Methodology with Application to Dialysis Patients in Basra/ Iraq
...Show More Authors

Survival analysis is one of the types of data analysis that describes the time period until the occurrence of an event of interest such as death or other events of importance in determining what will happen to the phenomenon studied. There may be more than one endpoint for the event, in which case it is called Competing risks. The purpose of this research is to apply the dynamic approach in the analysis of discrete survival time in order to estimate the effect of covariates over time, as well as modeling the nonlinear relationship between the covariates and the discrete hazard function through the use of the multinomial logistic model and the multivariate Cox model. For the purpose of conducting the estimation process for both the discrete

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimators of the parameter and Reliability Function of Inverse Rayleigh Distribution" A comparison study "
...Show More Authors

     In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the  informative and non- informative  prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.

View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
On the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution
...Show More Authors

      The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical c

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Bayes' Estimators for the Exponential Reliability Function Under Different Prior Functions
...Show More Authors

 In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We  derived  posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Gamma Distribution Under Precautionary Loss Function
...Show More Authors

In the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.

Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Posterior Estimates for the Parameter of the Poisson Distribution by Using Two Different Loss Functions
...Show More Authors

In this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Exponential Distribution under Different Loss Functions
...Show More Authors

In this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function
...Show More Authors

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).

View Publication Preview PDF
Crossref