Preferred Language
Articles
/
jeasiq-1978
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "
...Show More Authors

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best estimator.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Estimates Nonparametric In Multiple Regression Analysis Function (Gamma ,Beta)
...Show More Authors

The use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models                  

          In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Multi-level model of the factors that affect the escalation of dust in Iraq
...Show More Authors

In this research The study of Multi-level  model (partial pooling model) we consider The partial pooling model which is one Multi-level  models and one of  the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly  among the stations in Iraq. We use Akaik′s Informa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The impact of monetary policy variables inflation in Algeria: standard study using self regression time gaps
...Show More Authors

                In the past years, the Algerian Economy has witnessed various monetary developments characterized by different monetary and banking reforms aimed by monetary authorities to achieve monetary stability and driving overall growth. It should be noted that there is evidence to initiate fundamental changes on the basis of which new monetary, financing and banking policy mechanisms must be formulated in Algeria by enhancing the pursuit of reforming the monetary system, in order to improve monetary and economic indicators.

                The study a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use Of Genetic Algorithm In Estimating The Parameter Of Finite Mixture Of Linear Regression
...Show More Authors

The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To

... Show More
View Publication
Crossref
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
A field study of the problems of queues at some checkpoints in the city of Baghdad
...Show More Authors

 

Abstract

Due to the momentum of winning in the streets of the city of Baghdad as a result of the large number of checkpoints so felt researcher to conduct a field visit to find out the main reasons that led to this congestion and to find practical solutions to mitigate wastage winning the arrival time citizen to where you want the least possible time.

This research aims to overcome the difficulties experienced by citizens to reach their places of work and reduce waste at the time of service and waiting time as well as reduce the cost of waiting.

Has emerged study a set of conclusions, including the use of model queue (G / G / C) and the mome

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref