Preferred Language
Articles
/
jeasiq-261
discriminate analysis and logistic regression existence of multicolleniarty problem(Empirical Study on Anemia)

The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.

In this, search the comparison between binary logistic regression and linear discriminant function using error Category. In the practical side in the collection of data on the data on anemia collection Two variables are severe anemia (0) and and chronic anemia (1) and several variables about the disease. The Data were collected from several Iraqi hospitals, where samples collected from patients at the hospital are asleep, and previous cases lay in the hospital a sample of (140) the patient is infected with the disease. When the test data and found that Multicollinearity problem, It has been processed using a method partial least square. The research found that linear discriminant function It is the best in the classification of data from binary logistic regression classified as linear discriminant function the data correctly and more accurate than binary logistic regression.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
discriminate analysis and logistic regression by use partial least square

Abstract

   The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.

In this, search th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem

Abstract

  The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable.                                                                                  &nb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimation methods for regression model parametersIn the case of the problem of linear multiplicity and abnormal values

 A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust estimation of multiple linear regression parameters in the presence of a problem of heterogeneity of variance and outliers values

Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 12 2010
Journal Name
Alustath Journal For Human And Social Sciences
Suggested Approach to deal with Multicollinearity Problem – with Application –

This research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance

... Show More
Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref