Preferred Language
Articles
/
jeasiq-187
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:
...Show More Authors

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate linear parameters which represents amplitude . solve non-linear equations using Newton –Raphson method in sequential  non-linear least squares method and obtain parameters estimate that represents frequencies and linear parameters which represents amplitude  at the same time, and compared this method with sequential robust  M method when the signal affected by different types of noise including the normal distribution of the error and the heavy-tailed distributions error, numerical simulation are performed to observe the performance of the estimation methods for different sample size, and various level of variance using a statistical measure of mean square error (MSE), we conclude in general that sequential non-linear least squares method is more efficiency compared to others if we follow the normal and logistic distribution of noise, but if the noise follow Cauchy distribution it was a sequential robust M method based on bi-square weight function is the best in the estimation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 18 2025
Journal Name
Sustainable Engineering And Innovation
Using fruit fly and dragonfly optimization algorithms to estimate the Fama-MacBeth model
...Show More Authors

This research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f

... Show More
View Publication
Crossref
Publication Date
Fri Apr 13 2012
Journal Name
Kut Journal For Economic And Administrative Sciences
Using Different Methods to Estimate the Parameters of Probability Death Density Function with Application
...Show More Authors

In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.

Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
International Journal Of Engineering And Advanced Technology (ijeat)
Optimization Process Parameters of Submerged Arc Welding Using Taguchi Method
...Show More Authors

Submerged arc welding (SAW) process is an essential metal joining processes in industry. The quality of weld is a very important working aspect for the manufacturing and construction industries, the challenges are made optimal process environment. Design of experimental using Taguchi method (L9 orthogonal array (OA)) considering three SAW parameter are (welding current, arc voltage and welding speed) and three levels (300-350-400 Amp. , 32-36-40 V and 26-28-30 cm/min). The study was done on SAW process parameters on the mechanical properties of steel type comply with (ASTM A516 grade 70). Signal to Noise ratio (S/N) was computed to calculate the optimal process parameters. Percentage contributions of each parameter are validated by using an

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A PARTICULAR SOLUTION OF THE TWO AND THREE DIMENSIONAL TRANSIENT DIFFUSION EQUATIONS
...Show More Authors

A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)

View Publication Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimation methods for regression model parametersIn the case of the problem of linear multiplicity and abnormal values
...Show More Authors

 A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 02 2011
Journal Name
Ibn Al-haithem Journal For Pure And Applied Sciences
On modified pr-test double stage shrinkage estimators for estimate the parameters of simple linear regression model
...Show More Authors

Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Tree regression (TR), and Negative binomial regression (NBR) by Using Simulation.
...Show More Authors

            In this paper, the process of comparison between the tree regression model and the negative binomial regression. As these models included two types of statistical methods represented by the first type "non parameter statistic" which is the tree regression that aims to divide the data set into subgroups, and the second type is the "parameter statistic" of negative binomial regression, which is usually used when dealing with medical data, especially when dealing with large sample sizes. Comparison of these methods according to the average mean squares error (MSE) and using the simulation of the experiment and taking different sample

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Analytical study of high absorption region of the absorption edge of a-Si:H using nonlinear regression method
...Show More Authors

This research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value

... Show More
View Publication Preview PDF
Crossref