Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate linear parameters which represents amplitude . solve non-linear equations using Newton –Raphson method in sequential non-linear least squares method and obtain parameters estimate that represents frequencies and linear parameters which represents amplitude at the same time, and compared this method with sequential robust M method when the signal affected by different types of noise including the normal distribution of the error and the heavy-tailed distributions error, numerical simulation are performed to observe the performance of the estimation methods for different sample size, and various level of variance using a statistical measure of mean square error (MSE), we conclude in general that sequential non-linear least squares method is more efficiency compared to others if we follow the normal and logistic distribution of noise, but if the noise follow Cauchy distribution it was a sequential robust M method based on bi-square weight function is the best in the estimation.
The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat
... Show MoreA new panel method had been developed to account for unsteady nonlinear subsonic flow. Two boundary conditions were used to solve the potential flow about complex configurations of airplanes. Dirichlet boundary condition and Neumann formulation are frequently applied to the configurations that have thick and thin surfaces respectively. Mixed boundary conditions were used in the present work to simulate the connection between thick fuselage and thin wing surfaces. The matrix of linear equations was solved every time step in a marching technique with Kelvin's theorem for the unsteady wake modeling. To make the method closer to the experimental data, a Nonlinear stripe theory which is based on a two-dimensional viscous-inviscid interac
... Show MoreThe present study aimed at identifying the effectiveness of Macaton method in improving some sensory and cognitive skills in autistic children. In order to achieve the aims of the study, the researcher used the experimental method. The present study sample was (10) children whose ages ranged between (7-10) years and were diagnosed medically with autism disorder. The researcher randomly selected the sample and divided it into two groups: the first group consisted of (5) children representing the experimental group, and (5) children representing the control group after extracting the equivalence between the two groups in terms of age, intelligence, economic and social level and the degree of communication. The program was implemented for t
... Show MoreAbstract
In this paper, the solutions to class of robust non-linear semi-explicit descriptor control systems with matching condition via optimal control strategy are obtained. The optimal control strategy has been introduced and developed in the sense that, the optimal control solution is robust solution to the given non-linear uncertain semi-explicit descriptor control system. The necessary mathematical proofs and remarks as well as discussions are also proposed. The present approach is step-by-step illustrated by application example to show its effectiveness a and efficiency to compensate the structure uncertainty in the given semi-explicit (descriptor) control
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show MoreA partial temporary immunity SIR epidemic model involv nonlinear treatment rate is proposed and studied. The basic reproduction number is determined. The local and global stability of all equilibria of the model are analyzed. The conditions for occurrence of local bifurcation in the proposed epidemic model are established. Finally, numerical simulation is used to confirm our obtained analytical results and specify the control set of parameters that affect the dynamics of the model.
A New developed technique to estimate the necessary six elastic constants of homogeneous laminate of special orthotropic properties are presented in this paper for the first time. The new approach utilizes the elasto-static deflection behavior of composite cantilever beam employing the famous theory of Timoshenko. Three extracted strips of the composite plate are tested for measuring the bending deflection at two locations. Each strip is associated to a preferred principal axis and the deflection is measured in two orthogonal planes of the beam domain. A total of five trails of testing is accomplished and the numerical results of the stiffness coefficients are evaluated correctly under the contribution of the macromechanic
... Show MoreThe numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.