Preferred Language
Articles
/
jeasiq-1597
A Novel Invasive Weed Optimization Algorithm (IWO) by Whale Optimization Algorithm(WOA) to solve Large Scale Optimization Problems
...Show More Authors

Abstract  

  In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invasive Weed Optimization Algorithm (IWO), as for the Whale Optimization Algorithm (WOA) uses the intelligence of the swarms to reach the goal and achieve the best solution, which simulates the unique hunting behavior of humpback whales, which is called fishing by bubble trap hunting by creating distinctive bubbles along a circle or a path in the form of 9 has appeared for the first time in 2016 by Mirjalili and Lewis. In order to benefit from the intelligence of the flocks and to avoid falling into local solutions, the new hybridization between the IWO and WOA algorithm was proposed to launch the new hybrid algorithm (IWOWOA). The new hybrid algorithm (IWOWOA) was applied on 23 functions of large scale optimization problems, The proposed algorithm showed very high efficiency in solving these functions. The proposed algorithm was able to reach the optimal solutions by achieving the minimum value of most of these functions. This algorithm was compared with the basic algorithms IWO, WOA and two algorithms that follow the swarm system these algorithms are particle swarm optimization (PSO) and chicken swarm optimization (CSO) [7], they have been statistically tested by calculating the mean arithmetic μ and standard deviation σ for these functions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 05 2022
Journal Name
Network
A Computationally Efficient Gradient Algorithm for Downlink Training Sequence Optimization in FDD Massive MIMO Systems
...Show More Authors

Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Multifactor Algorithm for Test Case Selection and Ordering
...Show More Authors

Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Variable Selection Using aModified Gibbs Sampler Algorithm with Application on Rock Strength Dataset
...Show More Authors

Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Delivery Route Management based on Dijkstra Algorithm
...Show More Authors

For businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Selection of variables Affecting Red Blood Cell by Firefly Algorithm
...Show More Authors

Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.

View Publication Preview PDF
Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm
...Show More Authors

     This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for Multi-Robot Path Planning
...Show More Authors

This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm
...Show More Authors

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optimum Design of Power System Stabilizer based on Improved Ant Colony Optimization Algorithm
...Show More Authors

This paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.

 

View Publication Preview PDF
Publication Date
Thu Mar 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
An Artificial Intelligence Algorithm to Optimize the Classification of the Hepatitis Type
...Show More Authors

Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the

... Show More
View Publication Preview PDF
Crossref