It is general known that any design in various fields such as the interior design in the field of spaces interior for the public and specific buildings that is concern about the use of humans resident , as well as other considerations relating to the organization of design elements and lines of locomotors activity and the validity of appropriate receiving to provide comfort and achieve the requirements of the position in the space of restaurants field of research.
The researcher choose the title of this study (processors design career in public spaces), the analytical study of the spaces of restaurants, as one of the public spaces that are running in their general environment of people in various strata , ages and other levels , which is require not only the depend on the mechanism of action but also the suitable processors with the nature of the position and the space size with its users .
As the researcher mention above , this research included four chapters, the first chapter contains the research problem and its significance and the objectives of the research and its limits, and then select definitions .
The second chapter has dealt with the theoretical framework, including general results signals for the research and as a foundations for analytical processors in space description.
The third chapter consisted of field research procedures, which is methodology determined by analytical descriptive methods , then the research community and the selected sample of the selected spaces from world wild web sites, and search tool that it is a application for determine the analytical axes forms , and finally a description the sample and analysis.
The fourth chapter put the results of the field research, conclusions and proposals then recommendations.
The most important points of the study from the results can be summarized as follows:
1.Rectangular came to embody the idea of linear regulation that achieves independence and isolation users have more than one cell assembly and central shorting between users.
2. Ease of service delivery staff have space for customers, in this organization, which gives the progress of linear motion and clear and not confusing to navigate, and this organization is optimized in such spaces have elongation.
3. Must be diversity in the shape or color of assets in case of repetition boring as it appeared the three samples.
4. The shape and size of the internal spaces of the three samples impose the type and size of the form and methods of distribution of assets, in particular pieces of furniture from dining tables and seating seats.
5. The possibility of processors available in the first and second samples are wider and larger ones in the third sample is completely non-existent due to lack of space that contains Hits and by the middle wall represented the center of the space.
6. The space overlap in the distribution system to achieve visual communication and extension as achieved severity glass in the holes and also achieved Mari , this case has appeared in the first sample specifically
We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.