The study aims to identify the degree of appreciation for the level of digital citizenship of a sample of Palestinian university students in the governorates of Gaza, and its relationship to the level of health awareness about the emerging coronavirus (covid-19). To achieve the objectives of the study, the researcher followed a descriptive approach by applying two questionnaires; the first, which consists of 30 items, was used to measure the level of digital citizenship. The second, which consists of 19 items, was used to measure the level of health awareness. Both questionnaires were applied on a sample of 367 students who were electronically selected using the manner simple randomness. Results have shown that the degree of appreciation for the level of digital citizenship was high with a relative weight of 76.08%. Besides, the level of health awareness of coronavirus was high with a relative weight of 81.83%. Additionally, it has been found that there is a direct relationship with a statistical significance between the degree of sample appreciation of the level of digital citizenship, and the degree of its evaluation of the level of health awareness of coronavirus, where the correlation coefficient was 0.468. Moreover, there has been shown that there are no statistically significant differences between the mean scores of the individuals appreciation of the level of health awareness of coronavirus (Covid-19) due to the gender variable. That is; the level of digital citizenship was in favor of females.The study recommended that e-university platforms should include health awareness messages for preventive purposes
This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe fingerprints are the more utilized biometric feature for person identification and verification. The fingerprint is easy to understand compare to another existing biometric type such as voice, face. It is capable to create a very high recognition rate for human recognition. In this paper the geometric rotation transform is applied on fingerprint image to obtain a new level of features to represent the finger characteristics and to use for personal identification; the local features are used for their ability to reflect the statistical behavior of fingerprint variation at fingerprint image. The proposed fingerprint system contains three main stages, they are: (i) preprocessing, (ii) feature extraction, and (iii) matching. The preprocessi
... Show MoreThe design, synthesis, and characterization of a star shaped 2,4,6-tris-(4`-carboxyphenoxy)-1,3,5-triazine liquid crystalline with columnar discotic mesophase properties establish H-bond interactions with 3,5-dialkoxypyidine were reported. The structures of the synthesized compounds were actually determined by elementary analysis, and FT-IR, ¹HNMR, ¹³CNMR, and mass spectroscopy. The mesomorphic properties of these mesogens were examined using differential scanning calorimetry (DSC) and optical polarizing microscopy (OPM). The synthesized molecules exhibited enantiotropic hexagonal columnar liquid crystal, which depends for the H- bond complex in a 1:3 ratio.
This paper is concerned with the design and implementation of an image compression method based on biorthogonal tap-9/7 discrete wavelet transform (DWT) and quadtree coding method. As a first step the color correlation is handled using YUV color representation instead of RGB. Then, the chromatic sub-bands are downsampled, and the data of each color band is transformed using wavelet transform. The produced wavelet sub-bands are quantized using hierarchal scalar quantization method. The detail quantized coefficient is coded using quadtree coding followed by Lempel-Ziv-Welch (LZW) encoding. While the approximation coefficients are coded using delta coding followed by LZW encoding. The test results indicated that the compression results are com
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Abstract: Under high-excitation irradiance conditions to induce fluorescence, the dependence of photobleaching of Coumarin 307 (C307) and acriflavine (ACF) laser dyes in liquid and solid phases have been studied. A cw LD laser source of 1 mW and 407 nm wavelength was used as an exciting source. For one hour exposure time, it was found that the solid dye samples suffer photobleaching more than the liquid dye samples. This is because in liquid solutions the dye molecules can circulate during the irradiation, while the photobleaching is a serious problem when the dye is incorporated into solid matrix and cannot circulate.
This study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w