Preferred Language
Articles
/
ZBbKdIcBVTCNdQwCUUz9
(𝓹,𝔼)-convex sets and (𝓹,𝔼)-Convex functions with their properties

Crossref
View Publication
Publication Date
Thu Jan 24 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
On strongly E-convex sets and strongly E-convex cone sets

              -convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties.  Some examples to illustrate the aforementioned concepts and to cl

... Show More
Crossref
View Publication
Publication Date
Thu Oct 26 2017
Journal Name
International Journal Of Pure And Applied Mathematics
View Publication
Publication Date
Mon Apr 11 2016
Journal Name
Annals Of Fuzzy Mathematics And Informatics
View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
On semi strongly (E, F)-convex functions and semi strongly (E, F)-convex optimization problems
Abstract<p>In this paper, a new class of non-convex functions called semi strongly (<italic>E, F</italic>)-convex functions are presented. This class represents a natural extension of semi strongly <italic>E</italic>-convex functions shown in the literature. Different properties of this class of functions are discussed. Optimality properties of constrained optimization problems in which the objective function or the inequality constraints functions are semi strongly (<italic>E, F</italic>)-convex are proved for this class.</p>
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sat Dec 01 2012
Journal Name
International Journal Of Contemporary Mathematical Sciences
Approximation by Convex Polynomials in Weighted Spaces

Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity

Publication Date
Thu Mar 23 2023
Journal Name
Journal Of Applied Science And Engineering
Strong Fenchel Duality for Evenly Convex Optimization Problems

Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.

Scopus (1)
Scopus Clarivate
View Publication
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Mann Iteration Processes on Uniform Convex n-Banach Space

Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Al- Mustansiriyah Journal Science
Publication Date
Sun Sep 01 2013
Journal Name
Archives Des Sciences
Convex Approximation in Terms of Fractional Weighted Moduli of Smoothness

This paper deals with founding an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to the convex polynomials by means of weighted moduli of smoothness of fractional order  , ( , ) p f t . In addition we prove some properties of weighted moduli of smoothness of fractional order.

Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Some Results on Normalized Duality Mappings and Approximating Fixed Points in Convex Real Modular Spaces

  In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved

Scopus (3)
Scopus Clarivate Crossref
View Publication Preview PDF