The objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.
We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
Copulas are very efficient functions in the field of statistics and specially in statistical inference. They are fundamental tools in the study of dependence structures and deriving their properties. These reasons motivated us to examine and show various types of copula functions and their families. Also, we separately explain each method that is used to construct each copula in detail with different examples. There are various outcomes that show the copulas and their densities with respect to the joint distribution functions. The aim is to make copulas available to new researchers and readers who are interested in the modern phenomenon of statistical inferences.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
The main objective of this work is to generalize the concept of fuzzy algebra by introducing the notion of fuzzy algebra. Characterization and examples of the proposed generalization are presented, as well as several different properties of fuzzy algebra are proven. Furthermore, the relationship between fuzzy algebra and fuzzy algebra is studied, where it is shown that the fuzzy algebra is a generalization of fuzzy algebra too. In addition, the notion of restriction, as an important property in the study of measure theory, is studied as well. Many properties of restriction of a nonempty family of fuzzy subsets of fuzzy power set are investigated and it is shown that the restriction of fuzzy algebra is fuzzy algebra too.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreDiscrete logarithms are applied in many cryptographic problems . For instance , in public key . and for construction of sets with disti nct sums of k-clcments. The purpose o r this paper
is to modify the method ol' informationl1·iding using discrete logarithms , introduce new properties of St - sets , uscdthe direct product of groups to construct cyclic group and finally, present modified method for knapsack &
... Show MoreThe objective of this paper is, firstly, we study a new concept noted by algebra and discuss the properties of this concept. Secondly, we introduce a new concept related to the algebra such as smallest algebra. Thirdly, we introduce the notion of the restriction of algebra on a nonempty subset of and investigate some of its basic properties. Furthermore, we present the relationships between field, monotone class, field and algebra. Finally, we introduce the concept of measure relative to the algebra and prove that every measure relative to the is complete.
The restriction concept is a basic feature in the field of measure theory and has many important properties. This article introduces the notion of restriction of a non-empty class of subset of the power set on a nonempty subset of a universal set. Characterization and examples of the proposed concept are given, and several properties of restriction are investigated. Furthermore, the relation between the P*–field and the restriction of the P*–field is studied, explaining that the restriction of the P*–field is a P*–field too. In addition, it has been shown that the restriction of the P*–field is not necessarily contained in the P*–field, and the converse is true. We provide a necessary condition for the P*–field to obtain th
... Show More