Preferred Language
Articles
/
jcoeduw-1361
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Convolutional Neural Network (CNN) has been chosen as a better option for the training process because it produces a high accuracy. The final accuracy has reached 91.18% in five different classes. The results are discussed in terms of the probability of accuracy for each class in the image classification in percentage. Cats class got 99.6 %, while houses class got 100 %.Other types of classes were with an average score of 90 % and above.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust Optimization with practical application
...Show More Authors

The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values ​​of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Coincidence of Fixed Points with Mixed Monotone Property
...Show More Authors

The purpose of this paper is to introduce and prove some coupled coincidence fixed point theorems for self mappings satisfying -contractive condition with rational expressions on complete partially ordered metric spaces involving altering distance functions with mixed monotone property of the mapping. Our results improve and unify a multitude of coupled fixed point theorems and generalize some recent results in partially ordered metric space. An example is given to show the validity of our main result. 

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
MENTAL PICTURE THEORY AND PROBLEMATIC RELATIONSHIP WITH PROFILING
...Show More Authors

Walter Lippmann, speaking about man, says : ” Gradually he makes for himself a trustworthy picture inside his head of the world beyond his reach. “. This means that the picture, whether it was good or bad, it doesn’t happen for nothing, but rather for intentional purposes. Some orientalists make their judgements even before getting to the place concerned with the study.

The mental image is one of the most misused terminology, although the world today has become the world of image, it witnessed the disappearance of the theories that used to consider the media as a reflective mirror for society, also it was confirmed that the media creates what varies from reality and sometimes completely different from reality. The image of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and

... Show More
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
TV planning and ways to deal with space developments
...Show More Authors

The quote of a Canadian communication scientist (Marshall McLuhan) (“The world has become an electronic village”) has become an archaic information compared to the great and rapid development of communication in the last two decades of the 20th century and what will happen later in the 21st century, to the extent that the world is called, thanks to the internet, a “Small screen” and this fact is a sign of the great progress that has been made in this field. As for the other statement of the Canadian communication scientist mentioned before “the medium itself, is the message”, it has been renewed and developed in its meaning and it’s purpose. Each new technical development in the means of communication necessarily means a me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy aggregate production planning by using fuzzy Goal programming with practical application
...Show More Authors

Research summarized in applying the model  of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan  trying to cope with the impact that fluctuations in demand and  employs all available resources using two strategies where they are available   inventories  strategy and  the strategy of  change in the level of the workforce, these   strategies  costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (460)
Crossref (455)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Modeling of Corrosion Rate Under Two Phase Flow in Horizontal Pipe Using Neural Network
...Show More Authors

The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More