Background: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared to control group where as hardness decrease when adding carbon nanotubes. Conclusion: the addition of carbon nanotubes improves the physical and mechanical properties. Key words: Carbon nanotubes, high impact denture base.
In this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreBackground: The purpose of this study was to verify the influence of post- pressing time of acrylic resin (immediate, 6, 12 and 24 hour) on the dimensional accuracy of denture base whish is a critical factor in the retention and stability of the complete denture that may occur during polymerization shrinkage. Materials and Methods: Forty maxillary stone casts were poured in plastic mold (Columbia Dentoform corp. NEW YORK, type III dental stone (Geastone, Zeus Sri Loc.Tamburine Roccastrada, GR, Italy). The stone casts were randomly assigned into 4 groups of 10 specimens each according to the post-pressing times into (immediate, 6, 12 and 24 h.). Heat cure acrylic resin denture base was constructed according to the previously mentioned pressi
... Show MoreHigh temperature superconductors materials with composition Bi1.6-xSbxPb0.4Sr2Ca2-yCdyCu3OZ (x = 0, 0.1, 0.2 and 0.3) and (y = 0.01 and 0.02), were prepared by using the chemical reaction in solid-state ways, and test influence of partial replacement of Bi and Ca with Sb and Cd respectively on the superconducting properties, all samples were sintered at the same temperature (850 oC) and for the same time (195 h). The structural analysis of the prepared samples was carried out using X-ray diffraction (XRD) measurements performed at room temperature, scanning electron microscope (SEM) and dc electrical resistivity was measured as a function of temperature. It was found that the sample prepared by partial substitution of Sb at ratio (x= 0.2
... Show MoreThe problem in the design of a cam is the analyzing of the mechanisms and dynamic forces that effect on the family of parametric polynomials for describing the motion curve. In present method, two ways have been taken for optimization of the cam size, first the high dynamic loading (such that impact and elastic stress waves propagation) from marine machine tool which translate by the roller follower to the cam surface and varies with time causes large contact loads and second it must include the factors of kinematics features including the acceleration, velocity, boundary condition and the unsymmetrical curvature of the cam profile for the motion curve.
In the theoretical solution
... Show MoreDue to the rapid advancement of technology and the technology of things, modern industries start to need a highprecision equipment and surface finishing, so many finishing processes began to develop. One of the modern processes is Magnetic Abrasive Finishing (MAF), which is a high-precision process for internal and external finishing under the influence of a magnetic field of abrasive particles. Boron Carbide (B4C) ceramics was tested by mixing it with iron (Fe) and produced abrasive particles to reduce the intensity of scraping on the surface, reduce the economic cost and achieve a high finishing addition to remove the edges at the same time. The material selected for the samples was mild steel (ASTM E415) under (Quantity of Abrasives, Mac
... Show MoreRapid and continuous developments and changes in the modern business environment in all areas of economic, environmental, social, technology and communications push economic units to search for modern methods and methodologies to produce products at low cost as well as produce products that meet the wishes of customers in terms of quality and environment to maintain their market position, and accounting for the costs of the flow of materials is one of the most prominent environmental management accounting techniques capable of providing information to help produce