Background: This study aimed to evaluate the effect of zirconia different surface treatments (primer, sandblast with 50μmAl2O3, Er,Cr:YSGG laser) on shear bond strength between zirconia surface and resin cement. Material and methods: Sixty presintered Y-TZP zirconia cylinder specimens (IPS e.max ZirCAD, Ivoclar vivadent) will be fabricated and sintered in high temperature furnace of (1500 C for 8 hours) according to manufacturer’s instructions to the selected size and shape of (5mm. in diameter and 6mm in height). All specimens were ground flat using 600.800.1000.1200, aluminum oxide abrasive paper to obtain a standardized surface roughness. Surface roughness values were then recorded in µm using surface roughness tester (profilometer) to obtain a standardized data base line for all samples. The specimens were then randomly divided into three main groups (n=20); group A: no surface treatment (control group), group B: specimens in this group treated with 50μm Al2O3 and group C: specimens in this group treated with Er,Cr:YSGG laser. Sixty sound human premolars were used in this study, after construction of acrylic blocks, the occlusal surface of the teeth were ground flat, with diamond cutting disk to obtain a flat dentine surface . Prior to cementation of zirconia cylinders to tooth specimens subgroups (A1,B1,C1) will receive a coat of metal/zirconia primer and left to react for three minutes, while the subgroups (A2,B2,C2) were left undisturbed. Bonding surface of zirconia cylinder was then luted with SpeedCEM self adhesive resin cement under a static load of 2Kg. placed on the vertical arm of the surveyor and allowed to auto cure for 4minutes.The final cemented specimens were then stored in distilled water at room temperature for 24hours. All specimens were subjected to shear loading force in a universal testing machine at crosshead speed of 1mm/min. The shear bond strength values were analyzed statistically with one-way ANOVA; the fractured surfaces of zirconia cylinders were examined with a stereo-microscope to observe the failure mode. Results: The air borne-particle of 50μm followed by primer application showed significantly the higher bond strength than other groups. Conclusion : Within the limitation of this study, the results showed that sandblasting the bonding surface of zirconium cylinders with 50μmAl2O3 produced the highest values of shear bond strength , also the use of primer enhanced shear bond strength as well. Keyword: zirconia surface treatments, shear bond strength.
Background: An accurate adaptation of the crown to the finish line is essential to minimize cement dissolution and to preserve periodontium in fixed partial denture cases. An accurate adaptation of crown is possible only when preparation details are captured adequately in the impression and transferred to cast. For these reasons, gingival displacement is necessary to capture subgingival preparation details.The aim of the present study is to measure in vivo the horizontal displacement of the gingival sulcus obtained by using three new cordless retraction materials (Magic Foam Cord®, Racegel and Astringent Retraction Paste) in comparison to medicated retraction cord. Materials and method: Thirty-two patients requiring porcelain fused to me
... Show MoreRisk identification and assessment can be analysed using many risk management tools. Fishbone diagram is one of these techniques which can be employed, for the identification of the causes behind the construction failure, which has become a phenomenon that often gets repeated in several projects. If these failures are not understood and handled scientifically, it may lead to disputes between the project parties. Additionally, the construction failure also leads to an increase in the project budget, which in turn causes a delay in the completion of the projects. Punching shear in reinforcement slab may be one of the reasons for construction failures. However, there are many doubts about other causes that lead to this failure as w
... Show MoreThis study reveals the results of a numerical simulation performed using the ABAQUS/CAE finite element program. The study aimed to provide a simulation model that can forecast the shear behavior of reinforced concrete beams confined with reinforcing meshes. Limited numerical studies have been conducted using geogrid or FRP mesh as shear reinforcement, with limited representation accuracy and limited material quality. The results were compared to published experimental findings in the literature. The finding of the finite element model and the experimental results were highly comparable; consequently, the model was determined to be valid. Following this, the domain of numerical analyses was broadened to include the investigation of m
... Show MoreTwo novel demountable shear connectors for precast steel-concrete composite bridges are presented. The connectors use high-strength steel bolts, which are fastened to the steel beam with the aid of a special locking configuration that prevents slip of bolts within their holes. Moreover, the connectors promote accelerated construction and overcome typical construction tolerances issues of precast structures. Most importantly, the connectors allow bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (3) steel beams can be replaced, while precast
... Show MoreCarbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were
The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea
... Show More