Background: To assess the alveolar bone crest level (ABCL) by Cone Beam Computed To-mography (CBCT) and to investigate several variables as predictors for the height of the alveolar bone in adolescents. Materials and methods: Age, sex, and ethnic groups were rec-orded for each patient. CBCT images were used to obtain measurements of the interproximal alveolar bone level from the cementoenamel junction (CEJ) to the alveolar crest. The highest measurement in each sextant was recorded along with any presence of a vertical bone defect or calculus. Results: Total of 720 measurements were recorded for 120 subjects. No vertical bony defects or calculus were observed radiographically. Statistically significant (P< 0.05) differences were observed between ABCL measurements of males as compared to females, posterior teeth compared to anterior teeth and maxillary sextants in comparison to man-dibular ones. Additionally, value of ABCL significantly increased in relation to sex (r=0.309), maxillary posterior (r=0.509) and mandibular posterior sextants (r=0.506). Linear regression analysis indicated that the latter variables can predict the height of marginal bone, other independent variables were considered redundant. Conclusions: There was a low-profile of marginal bone loss among adolescents. Male sex, posterior teeth, and maxillary teeth have higher tendency for decreasing alveolar bone height.
Abstract
Metal cutting processes still represent the largest class of manufacturing operations. Turning is the most commonly employed material removal process. This research focuses on analysis of the thermal field of the oblique machining process. Finite element method (FEM) software DEFORM 3D V10.2 was used together with experimental work carried out using infrared image equipment, which include both hardware and software simulations. The thermal experiments are conducted with AA6063-T6, using different tool obliquity, cutting speeds and feed rates. The results show that the temperature relatively decreased when tool obliquity increases at different cutting speeds and feed rates, also it
... Show MoreIn this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show MoreCarbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties en
... Show MoreThe method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search the comparison between binary lo
... Show MoreFinite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreShell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.
The middle Cenomanian – early Turonian Mishrif Formation, a major carbonate reservoir unit in southern Iraq, was studied using cuttings and core samples and wireline logs (gamma‐ray, density and sonic) from 66 wells at 15 oilfields. Depositional facies ranging from deep marine to tidal flat were recorded. Microfacies interpretations together with wireline log interpretations show that the formation is composed of transgressive and regressive hemicycles. The regressive hemicycles are interpreted to indicate the progradation of rudist lithosomes (highstand systems tract deposits) towards distal basinal locations such as the Kumait, Luhais and Abu Amood oilfield areas. Transgressive hemicycles (transgressive systems tract deposits)
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show More