Background: Molars and premolars are considered as the most vulnerable teeth of caries attack, which is related to the morphology of their occlusal surfaces along with the difficulty of plaque removal. different methods were used for early caries detection that provide sensitive, accurate preoperative diagnosis of caries depths to establish adequate preventive measures and avoid premature tooth treatment by restoration. The aim of the present study was to evaluate the clinical sensitivity and specificity rates of DIAGNOdent and visual inspection as opposed to the ICDAS for the detection of initial occlusal caries in noncavitated first permanent molars. Materials and Methods: This study examined 139 occlusal surface of the first permanent molar pooled from fifty patients aged 8-9 years by three methods. The selected criteria include one occlusal site per tooth (first permanent molars) with carious lesions range from 0 to 3 according to ICDASII (gold standard) visual criteria then the clinical sensitivity and specificity of visual inspection according to Ekstrand et al.in 1997 and DIAGNOdent were performed. . Results: the highest correlation was found between the ICDASII and DIAGNOdent. The sensitivity of the DIAGNOdent for the enamel caries detection (D1) was better than that of visual inspection. The sensitivity and the specificity for the DIAGNOdent at D3 threshold were better than the D1 threshold and the visual inspection method. Conclusion: DIAGNOden pen can be used as a tool for early caries detection in cases of difficult diagnosis that provide good additional sensitivity to the visual inspection.
In the present work, a set of indoor Radon concentration measurements was carried out in a number of rooms and buildings of Science College in the University of Mustansiriyah for the first time in Iraq using RAD-7 detector which is an active method for short time measuring compared with the passive method in solid state nuclear track detectors (SSNTD's). The results show that, the Radon concentrations values vary from 9.85±1.7 Bq.m-3 to 94.21±34.7 Bq.m-3 with an average value 53.64±26 Bq.m-3 which is lower than the recommended action level 200-300 Bq/m3 [ICRP, 2009].
The values of the annual effective dose (A.E.D) vary from 0.25 mSv/y to 2.38 mSv/y, with an average value 1.46±0.67 mSv/y which is lower than the recommended the rang
Global Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.
In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show More