Background: Understanding the morphological characteristics between the floor of the maxillary sinus and the tips of the maxillary posterior roots is crucial in orthodontics involving diagnosis and treatment planning. The aim of this study was to evaluate the distances from the maxillary posterior root apices to the inferior wall of the maxillary sinus, thickness and density of maxillary sinus floor using cone-beam computed tomography images and the relationships between roots and maxillary sinus according to gonial angle and skeletal pattern. Materials and methods: Three-dimensional images of each root were checked, and the distances were measured along the true vertical axis from the apex of the root to the sinus floor, and the thickness and density of maxillary sinus floor in 60 patients (30 males, 30 female) aged 18 to 25 years. Evaluation of the differences between groups which classified to gonial angle and skeletal pattern which were done according to the comparsion between the mean statistic tests. Results: results showed that the density of floor of maxillary sinus at the first molar roots region in class III were significantly lower than class I and II, also the distance between the floor of maxillary sinus and both distobuccal and palatal roots of first molar were significantly lower in class I than other classes, while the thickness of maxillary sinus floor at the distobuccal root of first molar were significantly higher in class III than other classes. In gonial angle difference, the maxillary sinus floor density and distance to the maxillary posterior roots had no significant difference in all groups, while the thickness of maxillary sinus floor at distobuccal and palatal of second molar roots region were significantly higher in large gonial angle than small and normal angles. Conclusion: subjects with class I skeletal pattern have small distance between the maxillary sinus floor and the maxillary posterior roots due to the pneumatisation of maxillary sinus causing more difficult and time consuming orthodontic treatment.
Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform
... Show MoreMany additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreBackground. After tooth extraction, alveolar bone resorption is inevitable. This clinical phenomenon challenges dental surgeons aiming to restore esthetic and function. Alveolar ridge preservation can be applied to minimize dimensional changes with a new socket grafting material, an autogenous dentin graft, produced by mechanically and chemically processing natural teeth. This study assessed the safety and efficacy of using autogenous dentin biomaterial in alveolar ridge preservation. Materials and Methods. Patients with nonrestorable maxillary anterior teeth bounded by natural sound teeth were included in this study. After a detailed clinical and tomographic examination, eligible participants were randomly allocated into two groups
... Show More