Background: Ideal root canal obturation depends on many factors; one of them is good sealing of root canal without pores. The aim of this study was to determine the radiographic density of GuttaFlow® 2 with different obturation techniques using spiral computed tomography. Materials and Methods: Forty palatal roots of permanent maxillary first molar were used in this study. Following working length determination, root canal was prepared using rotary PROTAPER universal system. They were randomly divided into four groups of 10 roots each, the groups are Conventional lateral condensation with Apexit Plus sealer, Conventional lateral condensation with GuttaFlow® 2 as a sealer, Soft Core Regular with GuttaFlow® 2 as a sealer and single cone with GuttaFlow® 2. The experimental roots were then analyzed in both horizontal and vertical sections from the apex to coronal using Spiral Computed Tomography. The obtained data were analyzed using one-way ANOVA and Tukey tests at a level of significance of 0.05. Results: Statistical analysis showed highly significant differences among the different areas (apical, middle and coronal) of each group. The density of obturation systems decreased in the following sequence: single cone with GuttaFlow® 2 (highest density), Soft Core Regular, Conventional lateral condensation with GuttaFlow® 2 as a sealer and finally Conventional lateral condensation with Apexit Plus sealer (lowest density) Conclusion: None of the tested obturation techniques can achieve ideal three-dimensional dense obturation. Single cone with GuttaFlow® 2 shows the best results.
Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
To evaluate the shear bond strength and interfacial morphology of sound and caries-affected dentin (CAD) bonded to two resin-modified glass ionomer cements (RMGICs) after 24 hours and two months of storage in simulated body fluid at 37°C.
Sixty-four permanent human mandibular first molars (32 sound and 32 with occlusal caries, following the International Caries Detection and Assessment System) were selected. Each prepared substrate (sound and CAD) was co
Date palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
This work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreHumanity is confronted with a growing array of environmental challenges that demand immediate attention and cannot be disregarded. One of the issues the world faces is air pollution, which presents a significant risk to both the environment and human well-being. The capitalist system has a great impact on the exacerbation of air pollution and environmental deterioration. This impact is reflected in Caryl Churchill’s post-apocalyptic play Not Not Not Not Not Enough Oxygen (1971). The play presents a futuristic scenario in which humanity faces grave consequences due to the polluting practices of capitalism and the unsustainable exploitation of natural resources. It depicts a future in which environmental degradation drives people
... Show MoreSeries of new complexes of the type [M2 (L)Cl4 ] are prepared from the new ligand[N1 ,N4 -bis(benzo[d]thiazol-2- yl)succinamide (L) derived from ethan-1,2-dicarbonyl chloride and 2-aminobenzothiozole,where, M= Ni(ii), Cu(ii) and Zn(ii) alsocomplexes of mix-ligands, the type [M(L)(8-HQ)]Cl, where, M = Ni(ii), Cu(ii) and Zn(ii),8-HQ= 8-Hydroxyquinoline. Chemical forms are obtained from their 1 H, 13CNMR, Mass spectra (for (L)), FT-IR and U.V spectrum, melting point, molar conduct.Using flame (AA), % M is determined in the complexes.The content of C, H, N and S in the (L) and its complexes was specified. Magnetic susceptibility and thermal analysis (TGA) of prepared compounds were measured.The propose geometry for all complexes[M2 (L)Cl4 ] wa
... Show MoreAbstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.