The aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreThe plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434
... Show MoreGreen synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at
... Show MoreToday technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreIn the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show More