ABSTRACT Background: Piezosurgery device is a system developed recently to overcome the limitation of the traditional surgical technique in implant site preparation, which use the principle of ultrasonic microvibrations to create precise & selective cut in bone in harmony with the surrounding tissues. The aim of this study was to evaluate the outcomes of implants inserted by ultrasonic implant site preparation protocol (UISP) using piezosurgery device, regarding the survival rate, stability and other related factors, at 16 weeks postoperative follow up period. Materials and Methods: A total of (24) patients, (6) males and (18) females, aged between (19-51) years old, contributed in this study receiving a total of (42) implants, all of these implants bed were prepared by means of special tips mounted in piezosurgery device. For each patient thorough clinical and radiographical preoperative assessment was applied. Implant stability quotient (ISQ) values were measured at baseline, 8 weeks and at 16 weeks. Postoperative clinical and radiographic evaluation was applied for each patient for 16 weeks postoperatively. Results: (24) patients received (42) implants accomplished the follow-up period, After 16 weeks all implants (42) were osseointegrated and the overall implants survival rate was 100% with no failure and no complication was observed. The mean ISQ value at baseline was (74.32±6.42), the mean ISQ value at 8 weeks was (72.62±9.05) and at 16 weeks the mean ISQ (±SD) value was (76.68±7.35) the changes in the mean stability during the healing period showed significant increase in the implant stability (P≤0.05). At the 16th week the number of implants that achieved ISQ≥70 was 35 (83.3%), and 7 implants attained ISQ> 70 (16.7%). Conclusions: high and significant survival rate, significant secondary stability, early positive shifting of the mean ISQ value, no remarkable complications in implants inserted by ultrasonic implant site preparation indicated that piezosurgery is a reliable alternative and safe method used in dental implant osteotomy.
ackground: Escherichia coli is one of the most
important bacterial pathogen that can cause several
disease to human being . In our study we try to
investigate the sensitivity resistance pattern of
Escherichia coli against three antibiotics ( Amikacin,
Nalidixic acid and Cephalexin).
Methods: For this purpose we collected 51 clinical
isolates of Escherichia coli from stool and urine of
outpatient and inpatient patients from different wards
of AL-SADER Teaching Hospital in AL-NAJAF
AL-ASHRAf, IRAQ, and tested by culture and
sensitivity test .
Results: The results appeared that Amikacin show
the highest percentage of sensitivity ( 66.66 % ) ,
while Cephalexin show the lowest percentage of
sensiti
Liquid – liquid interface reaction is the method for
preparation nanoparticles (NP'S) which depend on the super
saturation of ions that provide by using the system that consist from
toluene and water, the first one is above the second to obtain
nanoparticles (NP's) CdS at the interface separated between these
two immiscible liquid. The structure properties were characterized by
XRD-diffraction and transmission electron microscopy.
The crystalline size estimate from X-ray diffraction pattern
using Scherer equation to be about 7nm,and by TEM analysis give us
that ananosize is about 5 nm which give a strong comparable with
Bohr radius. Photoluminescence analysis give two emission peak,
the first one around
The adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
The substrate's nature plays an important role in the characteristics of semiconductor films because of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide (SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) using a simple and low-cost chemical bath deposition technique. The structural, morphological, and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each film is polycrystalline and exhibits both orthorhombic and cubic stru
... Show MoreABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release show
... Show MoreIn this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
In this work, lead oxide (PbO) thin films were deposited using D.C. sputtering method on a surface of glass substrates and then thermally annealed at a temperature of 473K with annealing times of (1,2 and 3) hours. The structural, morphological, and optical properties of films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), FT-IR, and UV-Visible spectroscopy. The structure studies confirmed that PbO films are polycrystalline structures in an orthorhombic phase with average grain size (24.51, 29.64, 46.49, 16) nm with increasing annealing time. From AFM, the roughness of the film surface (3.26, 1.76, 1.61, 1.79) nm as the film annealing time increases. The optical band gap values of the PbO thin fi
... Show More