Background: Many types of instruments and techniques are used in the instrumentation of the root canal system. These instruments and techniques may extrude debris beyond the apical foramen and may cause post-instrumentation complications. The aim of this study was to evaluate the amount of apically extruded debris resulted by using 4 types of nickel-titanium instruments (WaveOne, TRUShape 3D conforming files, Hyflex CM, and One Shape files) during endodontic instrumentation. Materials and methods: Forty freshly extracted human mandibular second premolar with straight canals and a single apex were collected for this study. All teeth were cut to similar lengths. Pre-weighted glass vials were used as collecting containers. Samples were randomly divided into four groups with 10 samples in each group: Group A instrumentation by WaveOne reciprocating file, Group B instrumentation by TRUShape 3D rotating files, Group C instrumentation by Hyflex CM rotating files and Group D instrumentation by One Shape rotating file. A total volume of 7 ml of sodium hypochlorite was used for irrigation in each sample. Apical patency confirmed and maintained by a size #15 K-File. All canals were instrumented up to a size #25. After completion of endodontic instrumentation, vials were then stored in an incubator for 5 days at 68o C for dryness. Then vials are weighted again, and the pre-weight subtracted from the post-weight, the weight difference resembled the amount of apically extruded debris from the apical foramen during root canal instrumentation. Data obtained were statistically analysed by using ANOVA and LSD tests. Results: The results showed that the Hyflex CM Group (C) has statistical significant lowest apically extruded debris as compared to other groups of this study (P ≤0.05), while the TRUShape Group (B) has statistical significant lowest apically extruded debris as compared to One Shape Group (D) and WaveOne Group (A), while the WaveOne Group (A) showed the highest value of apically extruded debris (p ≤0.01). The result showed that all groups resulted in apical extrusion of debris. Significance: Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file system.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreImproved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreTime-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreFree vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreIn the present study, an attempt has been made to experimentally investigate the flexural performance of ten simply supported reinforced concrete gable roof beams, including solid control specimen (i.e., without openings) and nine beams with web openings of different dimensions and configurations. The nine beams with openings have identical reinforcement details. All beams were monotonically loaded to failure under mid-span loading. The main variables were the number of the created openings, the total area of the created openings, and the inclination angle of the posts between openings. Of interest is the load-carrying capacity, cracking resistance and propagation, deformability, failure mode, and strain development that represent the behav
... Show More