Background: In the traditional protocol, the patient should wait after extraction up to six months to place the dental implant in healed bone, this waiting time accompanied by varying degrees of alveolar bone changes. In order to overcome these problems, immediate implant placement in the fresh extraction socket was introduced. The Aim of this study was to evaluate the outcome of the immediate implant placement utilizing Resonance Frequency Analysis (RFA) to quantify implant stability and osseointegration. Materials and Methods: A total of (23) patients participated in the study, receiving (44) implants placed in the sockets of teeth indicated for extraction. Clinical and radiographic preoperative assessment was accomplished for each patient, β-TCP (combined with collagen membrane) was used to fill gaps ≥ (2 mm) and to repair bone defects. Implant stability quotient (ISQ) values were measured for the implants at baseline and at 16 weeks. Postoperative clinical and radiographic evaluation was applied for each patient. Results: A total of (22) patients received (41) implants completed the follow-up period, all these implants survived (100% survival rate) with no signs and symptoms of failure. The mean of ISQ value at baseline was (65.32±9.50), the mean of ISQ value at 16 weeks was (69.78±7.15), paired samples statistic showed high significant increase in the implant stability (P<0.01). Application of guided bone regeneration (GBR) showed no significant difference on ISQ value at baseline and at (16 weeks), but ISQ values increased significantly in GBR cases during the healing period. Conclusions: Immediate implant placement is a predictable treatment approach; it has the benefit of reducing treatment time and the numbers of surgical procedures when careful preoperative examination and appropriate intraoperative protocol is applied.
Two simple, rapid, and useful spectrophotometric methods were suggest or the determination of sulphadimidine sodium (SDMS) with and without using cloud point extraction technique in pure form and pharmaceutical preparation. The first method was based on diazotization of the Sulphdimidine Sodium drug by sodium nitrite at 5 ºC, followed by coupling with α –Naphthol in basic medium to form an orange colored product . The product was stabilized and its absorption was measured at 473 nm. Beer’s law was obeyed in the concentration range of (1-12) μg∙ml-1. Sandell’s sensitivity was 0.03012 μg∙cm-1, the detection limit was 0.0277 μg∙ml-1, and the limit of Quantitation was 0.03605μg
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected optimum conditions,
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected opti
... Show MoreIn this study, simple, low cost, precise and speed spectrophotometric methods development for evaluation of sulfacetamide sodium are described. The primary approach contains conversion of sulfacetamide sodium to diazonium salt followed by a reaction with p-cresol as a reagent in the alkaline media. The colored product has an orange colour with absorbance at λmax 450 nm. At the concentration range of (5.0-100 µg.mL-1), the Beer̆ s Low is obeyed with correlation coefficient (R2= 0.9996), limit of detection as 0.2142 µg.mL-1, limit of quantification as 0.707 µg.mL-1 and molar absorptivity as 1488.249 L.mol-1.cm-1. The other approach, cloud point extraction w
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreThe aim of this study was extraction of jojoba oil using different solvents. A mixture of waterhexane and water-ethanol are used as solvents to extract jojoba oil in a batch extraction process and compared with a pure solvent extraction process. The effects of particle size of crushed seeds, solvent-to-water ratio and time on jojoba oil extraction were investigated. The best recovery of oil was obtained at the boiling temperature of the solvent and four hour of extraction time. When seed particle size was 0.45 mm and a pure ethanol was used (45% yield of oil extraction), whereas, it was 40% yield of oil at 25% water-hexane mixture. It was revealed that the water-ethanol and water-hexane mixtures have an effect on the oil extraction yield. T
... Show MoreThe distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.
Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapour pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. In this research several hydrophobic ionic liquids were synthesized at laboratory. These ionic liquids include (1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[Bmim][NTf2], 1-Hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[Hmim][NTf2], 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide[Omim][NTf2],1‐butyl
... Show MoreAn investigation was conducted effect of addition co- solvent on solvent extraction process for two types of a lubricating oil fraction (spindle) and (SAE-30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery. In this study two types of co-solvents ( formamide and N-methyl, 2, pyrrolidone) were blended with furfural to extract aromatic hydrocarbons which are the undesirable materials in raw lubricating oil, in order to improve the viscosity index, viscosity and yield of produced lubricating oil. The studied operating condition are extraction temperature range from 70 to 110 °C for formamide and 80 to 120 °C for N-methyl, 2, pyrrolidone, solvent to oil ratio range from 1:1 to 2:1 (wt./wt.) for furfural with form
... Show More