Background: Contact between implant material and bones must be strong and fast creation, to fulfill these properties appropriate surface modifications must apply on used implants. In this contribution; double surface modifications are applied on Ti-6Al-4V alloy to accelerate osseointegration. Materials and methods: Anodic process is utilized to create titania nanotubes (TNTs) on the screws made from Ti-6Al-4V alloy. These implants were coated with nano ZrO2 particles. Second modification was annealing anodized screws at 8000C, and implanted in tibiae of nine adult New Zealand white rabbits. Results: Physical and histological consequences of two surface modifications on Ti-6Al-4V alloy screws were studied. Scanning electron microscope (SEM) images shows inhomogeneous distribution of TNTs on screws surfaces. X-ray diffraction (XRD) patterns illustrate the covering of first group samples with ZrO2 and transformation of Ti to its oxide (Rutile phase) for second group. These pattern shows that TiO2 had higher crystallinity and larger grain size than ZrO2. Atomic Force Microscopy images (AFM) shows the increasing of roughness, grain size and internal diameter of TNTs after annealing process. Coated implant with ZrO2 at 4 month duration shows threads with newly Haversian canal feature. Annealed implant at same duration shows well developed threads, base of implant illustrates bone trabeculae filled the base of implant bed with active osteoblast cells. Conclusion: Modification of implant's surface produced an improvement of osseointegration in comparison to untreated one.
In this paper, we will introduce and study the concept of nano perfect mappings by using the definition of nano continuous mapping and nano closed mapping, study the relationship between them, and discuss them with many related theories and results. The k-space and its relationship with nano-perfect mapping are also defined.
Photovoltaic devices (PVs) were fabricated by spray-coating an ink of copper indium diselenide CuInSeR 2 R(CIS) nanocrystals as the light-absorbing layer. Without high-temperature post-deposition annealing, PVs were made on glass substrates with power conversion efficiencies of up to 1.5% and 0.9%, for Au and Mo coated respectively, under AM 1.5 illumination. UV–Vis spectrophotometer in the wavelength range 350–1500 nm. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CuInSeR 2 R have the chalcopyrite structure as the major phase and no secondary phase with a preferred orientation along (112) direction and The atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2.
This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show MoreFar infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in
... Show MoreThree new polyphosphates were synthesized in good yields by reacting diethylenetriamine with the appropriate phosphate ester in ethanol under acidic conditions. The polyphosphate structures were determined using FT-IR and 1H-NMR spectroscopies, and their elemental compositions were confirmed by EDX spectroscopy. Polyphosphates were added to poly(vinyl chloride) (PVC) at low concentrations to fabricate thin films. The PVC films were irradiated with ultraviolet light for long periods, and the effect of polyphosphates as the photostabilizer was investigated by determining changes in the infrared spectra (intensity of specific functional group peaks), reduction in molecular weight, weight loss, and surface morphology. Minimal changes we
... Show MoreBackground: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreDue to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreBackground: The aims of this study were to evaluate the effect of implant site preparation in low-density bone using osseodensification method in terms of implant stability changes during the osseous healing period and peri-implant bone density using CBCT. Material and methods: This prospective observational clinical study included 24 patients who received 46 dental implants that were installed in low-density bone using the osseodensification method. CBCT was used to measure the bone density pre- and postoperatively and implant stability was measured using Periotest® immediately after implant insertion and then after 6 weeks and 12 weeks postoperatively. The data were analyzed using paired t-test and the probability value <0.05 was conside
... Show MoreBackground: to evaluate the effect of different dentifrices on the surface roughness of two composite resins (nanofilled-based and nanoceramic – based composite resins). Materials and methods: Forty specimens (diameter 12 mm and height of 2mm) prepared from different composite resin materials: Z350 (nanofilled composite, and Ceram-X (nanoceramic) .they were subjected to brushing simulation equivalent to the period of 1 year. The groups assessed were a control group brushed with distilled water (G1), Opalescence whitening toothpasteR (G2), Colgate sensitive pro-relief (G3) and Biomed Charcoal Toothpaste (G4). The initial and final roughness of each group was tested by surface roughness tester. The results were statistically analyzed using
... Show More