During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThe game of volleyball requires the formation of new motor responses, which in turn requires special physical characteristics in the performance of that skill, and the correct and accurate performance during the performance of the skills of passing from the top and smash serve in volleyball cannot be developed or improved without a good level of accuracy and what is required to perform the movements in terms of responses to the defense and attack movements. Therefore, the researchers decided to identify the type of relationship between the motor response speed with the performance accuracy of the skills of passing from the top and the smash serve in volleyball. The research aims to: 1. Identifying the motor response speed of fourth-stage s
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreDiarrhea is a real disease in childhood which could cause death. Therefore, this study was conducted to isolate Salmonella from 350 stool samples taken from children under five years in age, suffering from diarrhea during the period from March 2019 to March 2020 in Tikrit city / Iraq. The results showed the possibility to isolate ten isolates of Salmonella enterica subsp. Enterica, an infection rate, represents 2.875% of the total rate of patients who suffer from diarrhea. The virulence genes were investigated for ten isolates of S. enterica subsp. enterica, the result is that all isolates possessed the genes stn, invA, lpfA with an appearance percentage of 100%, whi
... Show MoreThe futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individu
... Show MoreBackground; Perforated duodenal ulcer (PDU) is a common surgical emergency that is associated with high mortality and morbidity. Early diagnosis and prompt surgical treatment is required to prevent grave complications.
Objective; The study was designed to evaluate the diagnostic accuracy of different radiological investigations in the diagnosis of perforated duodenal ulcer.
Methods; A prospective study of 185 pts with PDU at al kindy teaching hospital, Baghdad, Iraq from June 2008- august 2010. patients were examined clinically and investigated by blood test, chest x ray, plain X ray of the abdomen. Ultrasonography (U/S) and CT scanning done for those patients with negative X- ray finding. Resuscitation by intravenous fluid and ant