During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Diarrhea is a real disease in childhood which could cause death. Therefore, this study was conducted to isolate Salmonella from 350 stool samples taken from children under five years in age, suffering from diarrhea during the period from March 2019 to March 2020 in Tikrit city / Iraq. The results showed the possibility to isolate ten isolates of Salmonella enterica subsp. Enterica, an infection rate, represents 2.875% of the total rate of patients who suffer from diarrhea. The virulence genes were investigated for ten isolates of S. enterica subsp. enterica, the result is that all isolates possessed the genes stn, invA, lpfA with an appearance percentage of 100%, whi
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThe objective of the study was to identify the effect of the use of the Colb model for the students of the third stage in the College of Physical Education and Sports Sciences, University of Baghdad,As well as to identify the differences between the research groups in the remote tests in learning skills using the model Colb.The researcher used the experimental method and included the sample of the research on the students of the third stage in the College of Physical Education and Sports Science / University of Baghdad by drawing lots, the third division (j) was chosen to represent the experimental group,And the third division (c) to represent the control groupafter the distribution of the sample splitting measure according to the Colb mode
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
The game of volleyball requires the formation of new motor responses, which in turn requires special physical characteristics in the performance of that skill, and the correct and accurate performance during the performance of the skills of passing from the top and smash serve in volleyball cannot be developed or improved without a good level of accuracy and what is required to perform the movements in terms of responses to the defense and attack movements. Therefore, the researchers decided to identify the type of relationship between the motor response speed with the performance accuracy of the skills of passing from the top and the smash serve in volleyball. The research aims to: 1. Identifying the motor response speed of fourth-stage s
... Show MoreThe rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreIn recent years, there has been a significant increase in research demonstrating the new and diverse uses of non-thermal food processing technologies, including more efficient mixing and blending processes, faster energy and mass transfer, lower temperature and selective extraction, reduced thermal and concentration gradients, reduced equipment size, faster response to extraction control, faster start-up, increased production, and a reduction in the number of steps in preparation and processing. Applications of ultrasound technology have indicated that this technology has a promising and significant future in the food industry and preservation, and there is a wide scope for its use due to the higher purity of final products and the
... Show MoreIn this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases;
... Show More