During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreA new (Reversed Phase- High Performance Liquid chromatography) RP-HPLC method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of antioxidants present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting antioxidants. Limit of detection in μg/ml of Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthocyanins, Dephinidin-3-glucoside were113.8294×10-6,123.0453×10-6,70.3681×10-6,59.6730×10-6,148.1710×10-6,and125.3481×10-6 respectively. The concentration of antioxidants found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Vitamin C, Sabdaretine, Gossypetine, Hibiscetine, Anthoc
... Show MoreThis study was carried out in epidemically field with common reed (Phragmites communis Trin.) plants in the Nassiriah cityThiQur governorate ,during 2009/2010 to investigate the influence of plant growth regulator gibberellin (GA3)and cytokinin (CK) in increasing the efficacy of glyphosate and Fluazifop-butyl in common reed control . Factorial experiment in RCBD was used with three replications in tow Factors . Glyphosate 3500mg .l־¹ gave the higher mean of injury score of common reed and lower mean of common reed shoots , shoots dry weight and rhizome dry weight(3.59,22.01 shoot /0.5m² ,0.57Kg / 0.5m² and 250.50gm /0,5m² ),respectively. All plant growth regulators gaves the higher means of common reed shoots and rhizome dry weight com
... Show MoreThe rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreDiarrhea is a real disease in childhood which could cause death. Therefore, this study was conducted to isolate Salmonella from 350 stool samples taken from children under five years in age, suffering from diarrhea during the period from March 2019 to March 2020 in Tikrit city / Iraq. The results showed the possibility to isolate ten isolates of Salmonella enterica subsp. Enterica, an infection rate, represents 2.875% of the total rate of patients who suffer from diarrhea. The virulence genes were investigated for ten isolates of S. enterica subsp. enterica, the result is that all isolates possessed the genes stn, invA, lpfA with an appearance percentage of 100%, whi
... Show More