During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Hiding secret information in the image is a challenging and painstaking task in computer security and steganography system. Certainly, the absolute intricacy of attacks to security system makes it more attractive.in this research on steganography system involving information hiding,Huffman codding used to compress the secret code before embedding which provide high capacity and some security. Fibonacci decomposition used to represent the pixels in the cover image, which increase the robustness of the system. One byte used for mapping all the pixels properties. This makes the PSNR of the system higher due to random distribution of embedded bits. Finally, three kinds of evaluation are applied such as PSNR, chi-square attack, a
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreA sensitivity-turbidimetric method at (0-180o) was used for detn. of mebeverine in drugs by two solar cell and six source with C.F.I.A.. The method was based on the formation of ion pair for the pinkish banana color precipitate by the reaction of Mebeverine hydrochloride with Phosphotungstic acid. Turbidity was measured via the reflection of incident light that collides on the surface particles of precipitated at 0-180o. All variables were optimized. The linearity ranged of Mebeverine hydrochloride was 0.05-12.5mmol.L-1, the L.D. (S/N= 3)(3SB) was 521.92 ng/sample depending on dilution for the minimum concentration , with correlation coefficient r = 0.9966while was R.S.D%
... Show MoreThe current study aims at identifying the impact of using learning acceleration model on the achievement of mathematics for third intermediategrade students. Forachieving this, the researchers chose the School (Al-Kholood Secondary School for Girls) affiliated to the General Directorate of Babylon Education / Hashemite Education Department for the academic year (2021/2021), The sample reached to (70) female students from the third intermediate grade, with (35) female students for each of the two research groups. The two researchers prepared an achievement test consisting of (25) objective items of multiple choice type, The psychometric properties of the test were confirmed, and after the completion of the experiment, the achievement test wa
... Show MoreThe aim of this research is to develop qualitative workouts based on certain sensory perceptions for the development of offensive basketball abilities and to determine their impact on female pupils. Several findings, based on the au-thor's extensive expertise instructing basketball materials and our closeness to the sample, revealed deficits in some sensory perceptions “in the game of basketball”, which impair the accuracy of passing the ball to the best team-mate. It also affects the pace of dribbling and the difficulty of selecting the op-timal moment and distance to fire. Therefore, the researcher designs qualita-tive activities based on many sensory experiences, including distance, speed, force, and direction shift. In addition, the
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solu
... Show MoreIn this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.