During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Background/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MorePesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID
... Show MoreA study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreA variety of new phenolic Schiff bases derivatives have been synthesized starting from Terephthaladehyde compound, all proposed structures were supported by FTIR, 1H-NMR, 13C-NMR, Elemental analysis, some derivatives evaluated by Thermal analysis (TGA).
In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.