During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
This paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreIdioms are a very important part of the English language: you are told that if you want to go far (succeed) you should pull your socks up (make a serious effort to improve your behaviour, the quality of your work, etc.) and use your grey matter (brain).1 Learning and translating idioms have always been very difficult for foreign language learners. The present paper explores some of the reasons why English idiomatic expressions are difficult to learn and translate. It is not the aim of this paper to attempt a comprehensive survey of the vast amount of material that has appeared on idioms in Adams and Kuder (1984), Alexander (1984), Dixon (1983), Kirkpatrick (2001), Langlotz (2006), McCarthy and O'Dell (2002), and Wray (2002), among others
... Show MoreThe personal drama in particular, and one of the key elements underlying the dramatic structure to convey ideas and visions presented by the author when writing the text of the dramatic fall after that on the way out the submission form that suits the proposals of the text and processors directorial would push the wheel of dramatic structure to the front. So take the maker of the artwork (writer) undertook the transfer of those events and personalities in art presumed sometimes real and sometimes, in order to enrich the art inspired by the human reality through the ages, and full of its themes and ideas that led to the development experiences of peoples experiences of living. Therefore, we find it important to research in the characters
... Show MoreThis research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreThis study assessed the advantage of using earthworms in combination with punch waste and nutrients in remediating drill cuttings contaminated with hydrocarbons. Analyses were performed on day 0, 7, 14, 21, and 28 of the experiment. Two hydrocarbon concentrations were used (20000 mg/kg and 40000 mg/kg) for three groups of earthworms number which were five, ten and twenty earthworms. After 28 days, the total petroleum hydrocarbon (TPH) concentration (20000 mg/kg) was reduced to 13200 mg/kg, 9800 mg/kg, and 6300 mg/kg in treatments with five, ten and twenty earthworms respectively. Also, TPH concentration (40000 mg/kg) was reduced to 22000 mg/kg, 10100 mg/kg, and 4200 mg/kg in treatments with the above number of earthworms respectively. The p
... Show More