Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Semi-analytical method for solving Fokker-Planck’s equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Mathematical Problems In Engineering
Enhanced Simulated Annealing for Solving Aggregate Production Planning
...Show More Authors

Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving Two Dimensional Spaces PDE
...Show More Authors
Abstract<p>In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.</p>
View Publication
Scopus (20)
Crossref (9)
Scopus Crossref
Publication Date
Fri Apr 15 2016
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Development of Measurement Scale for Hypothesized Conceptual Model of E-service Quality and User Satisfaction Relationship
...Show More Authors

Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Study the effect of a new nikel (II) Complex and anticancer drug (cp) on Liver enzyme activity (GPT,GOT) and Creatinine level in Kidney of femal mice
...Show More Authors

This study involved the effect of anew nickel (II) complexs with formla [NiL2(H2O)2].2.5ETOH where L=Bis[5-(p-nitrophenyL)-4-phenyL-1,2,4-traizole-3-dithocarbamato hydrazide] diaqua. nickel(II). Ethanol(2.5).and anti-cancer drug cyclophosphamide on specific actifity of two Liver enzymes (GOT,GPT) in the (Liver,kidney) tissues and on the creatinine Level in the kidney byUtilizing an invivosystem in femalmice.The result showed that inhibition in the activity of GPT and GOT enzymes in theLiver and in both nickel (II) complex and cyclophosphamide drug (CP) . mice weretreated with three doses (90,180,320) µg/mouse for three days for each group.The Liver show's the highest rate of GPT inhibition was about 97.43% at180µg/mouse regarding the ki

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Experimental Investigation of Bearing Capacity of Screw Piles and Excess Porewater Pressure in Soft Clay under Static Axial Loading
...Show More Authors

In this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method
...Show More Authors

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref