Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving (1+1)-Dimensional Differential Equation
...Show More Authors

View Publication Preview PDF
Scopus (18)
Crossref (6)
Scopus Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Efficient Iterative Method for Solving Korteweg-de Vries Equations
...Show More Authors

The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of 

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
A SEMI ANALYTICAL ITERATIVE TECHNIQUE FOR SOLVING DUFFING EQUATIONS
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Modern Mathematical Sciences
Coupled Laplace-Decomposition Method for Solving Klein- Gordon Equation
...Show More Authors

In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.

Preview PDF
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of King Saud University - Science
A semi-analytical iterative technique for solving chemistry problems
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Self-Efficacy and its Relation to the Cognitive Assessment for the Daily Disturbances for the University of Baghdad Students
...Show More Authors

The current research tackles the self-efficacy and its relation to the cognitive assessment for the daily disturbances for the University of Baghdad students. Two criteria have been adopted to achieve the objectives of the research. The sample of this study consists of 200 male and female students who were chosen randomly. The data were analyzed statistically, revealing that the university students owned their own self-efficacy as well as a cognitive assessment for the daily disturbances and they recognized them as self-threatening. The results also indicated the existence of a prediction activity in the field of the cognitive assessment to the daily disturbances selection. In light of the acquired results, the study recommends the neces

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 01 2025
Journal Name
Iraqi Journal Of Physics
Design an Efficient Neural Network to Determine the Rate of Contamination in the Tigris River in Baghdad City
...Show More Authors

This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t

... Show More
View Publication
Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Engineering And Technology Journal
Investigating Forward kinematic Analysis of a 5-axes Robotic Manipulator using Denavit-Hartenberg Method and Artificial Neural Network
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (51)
Crossref (40)
Scopus Crossref