Preferred Language
Articles
/
ixaF44sBVTCNdQwCV-Nn
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bayesian regularized neural networks (BRNNs), Bayesian additive regression trees (BART), extreme gradient boosting (xgBoost), and hybrid neural fuzzy inference system (HNFIS) were used considering the complex relationship of rainfall with sea level pressure. Principle components of SLP domain correlated with daily rainfall were used as predictors. The results revealed that the efficacy of AI models is predicting daily rainfall one day before. The relative performance of the models revealed the higher performance of BRNN with normalized root mean square error (NRMSE) of 0.678 compared with HNFIS (NRMSE = 0.708), BART (NRMSE = 0.784), xgBoost (NRMSE = 0.803), and ELM (NRMSE = 0.915). Visual inspection of predicted rainfall during model validation using density-scatter plot and other novel ways of visual comparison revealed the ability of BRNN to predict daily rainfall one day before reliably.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Thu Jan 30 2025
Journal Name
Iraqi Journal Of Agricultural Sciences
FIRST RECORD OF RED ALGAE POLYSIPHONIA SUBTILISSIMA (MONTAGNE, 1840) (FAMILY: RHODOMELACEAE) COLLECTED FROM KARACHI COAST PAKISTAN (NORTHERN ARABIAN SEA).
...Show More Authors

This study presents a detailed morphology and taxonomic study of Polysiphonia subtilissima collected from Abdul Rehman Goth, Karachi coast, Pakistan. Polysiphonia is a filamentous heterotrichous red algae, characterized by its branching structures and attachment mechanisms. P. subtilissima is notable for its broad salinity tolerance and wide distribution across marine and freshwater ecosystems. This research provides an in-depth examination of the internal and external structures of P. subtilissima, contributing to its systematic study and documenting its first recorded occurrence in Pakistani coastal areas, bordering the northern Arabian Sea. The findings enhance the understanding of the species taxonomy and its ecological role in

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Oct 13 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
Improvement of the Face Recognition Systems Security Against Morph Attacks using the Developed Siamese Neural Network
...Show More Authors

Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region
...Show More Authors

View Publication
Scopus (93)
Crossref (89)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Investigation of R134a Flow Boiling Heat Transfer and Pressure Drop in the Evaporator Test Section of Refrigeration System
...Show More Authors

This paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat trans

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Two – Dimensional Mathematical Model to Study Erosion Problem of Tigris River Banks at Nu’maniyah
...Show More Authors

The high and low water levels in Tigris River threaten the banks of the river. The study area is located on the main stream of Tigris River at Nu’maniyah City and the length of the considered reach is 5.4 km, especially the region from 400 m upstream Nu’maniyah Bridge and downstream of the bridge up to 1250 mwhich increased the risk ofthe problemthat itheading towardsthe streetand causingdanger tonearbyareas.

The aim of this research is to identify the reason of slope collapse and find proper treatments for erosion problem in the river banks with the least cost. The modeling approach consisted of several steps, the first of which  is by using “mini” JET (Jet Erosion Test) d

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Investigation of Drag Reduction Techniques in a Car Model
...Show More Authors
Abstract<p>Reducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×10<sup>5</sup>, 5.23×10<sup>5</sup>, 7.85×10<sup>5</sup> and 10.46×10<sup>5</sup>), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi</p> ... Show More
View Publication
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Tue Dec 10 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
Development of Robust and Efficient Symmetric Random Keys Model based on the Latin Square Matrix
...Show More Authors

Symmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Plant Archives
INVESTIGATION OFsHLA-GAND IT’S RECEPTOR (LILRB4) IN IRAQI PATIENTS INFECTED WITH L. INFANTUMAND THEIR EFFECTS ON THE LEVEL OF IL-12
...Show More Authors

Visceral leishmaniasis(VL) or kala-azar is one of the world most neglected tropical diseases in mortality and fourth in morbidity, rK39 dipstick was used to diagnose the suspected infected patients as easiest and rapid technique for VL diagnostic, the disease out-coming required to the differentiation of cell mediated immunity either T-helper 1(Th-1) or (Th-2). One of main pointers that may be considered as one of immune evasion strategy in the host-parasite interplay is HLA-G level alteration. HLA-G Known as a special proteins (non-classical HLA class I) molecules which can suppress the immune system by T-cell functions impaired in the aid with target receptors as LILRB4. The development of the cell mediated immunity initiated with Interle

... Show More
Preview PDF
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (57)
Crossref (29)
Scopus Clarivate Crossref