A neutron induced deuteron emission spectra and double differential cross-sections (DDX), in 27Al (n, D) 26Mg, 51V (n, D)50Ti , 54Fe ( n, D)53Mn and 63Cu (n, D) 62Ni reactions, have been investigated using the phenomenological approach model of Kalbach. The pre-equilibrium stage of the compound nucleus formation is considered the main pivot in the discription of cross-section, while the equilibrium (pick up or knock out ) process is analyzed in the framework of the statistical theory of cluster reactions, Feshbach, Kerman, and Koonin (FKK) model. To constrain the applicable parameterization as much as possible and to assess the predictive power of these models, the calculated results have been compared with the experimental data and other theoretical work such as TALYS code (Tendl-2014). The comparisons indicate good agreement between these models with the experimental data.
This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results are shown through numerical examples.
Among the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS
... Show MoreIn this paper, we studied the travelling wave solving for some models of Burger's equations. We used sine-cosine method to solution nonlinear equation and we used direct solution after getting travelling wave equation.
The main objective of this paper is to introduce and study the generality differential operator involving the q-Mittag-Leffler function on certain subclasses of analytic functions. Also, we investigate the inclusion properties of these classes, by using the concept of subordination between analytic functions.
In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when theï€ ï¡-level equals one.
In this paper, we derive some subordination and superordination results for certain subclasses of p− valent analytic functions that defined by generalized Fox-wright functions using the principle of differential subordination, ----------producing best dominant univalent solutions. We have also derived inclusion relations and solved majorization problem.
A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a re
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get of the strengths and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered
... Show MoreRecently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show More