In this paper, we propose new types of non-convex functions called strongly --vex functions and semi strongly --vex functions. We study some properties of these proposed functions. As an application of these functions in optimization problems, we discuss some optimality properties of the generalized nonlinear optimization problem for which we use, as an objective function, strongly --vex function and semi strongly --vex function.
In this project we analyze data of a large sample of gas rich dwarfs galaxies including; Low Surface Brightness Galaxies (LSBGs), Blue Compact Galaxies (BCGs), and dwarfs Irregulars (dIr). We then study the difference between properties of these galaxies in the range of radio frequencies (B-band). The data are available in HIPASS catalogue and McGaugh’s Data Page. We depended also NASA/IPACExtragalactic Databes web site http://ned.ipac.caltech.edu in the data reduction. We measured the gas evolution (HI mass), gas mass-to-luminosity ratio, and abundance of the elements such as the oxygen abundance for these galaxies. Our results show a
... Show MoreThe aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreThe present study aimed to identify teaching problems which facing the teachers for first three grades classes, and if these problems different according to some variables teacher qualification, experience period, class grade). The study sample consist of (137 )
female teachers who teach the first three grades in Braimy city in Oman, teachers spread in five government schools. Both researchers developed questionnaire to measure problems faced by the mentioned teachers, consist of 50 questions distributed into 4 dimensions (teacher, students, the curriculum, the evaluations), Also researchers checked questionnaire validity and stability. The results indicate to: The most common probl
... Show MoreThis study investigates the challenges encountered by first-grade intermediate students in learning the Arabic language. It aims to identify specific obstacles that hinder language acquisition and proficiency among this demographic. Through qualitative and quantitative methods, including surveys and interviews with students, teachers, and parents, the research highlights key issues such as limited vocabulary, difficulties in grammar, lack of engagement with the material, and inadequate teaching resources. The findings reveal a complex interplay between cognitive, social, and educational factors that contribute to these challenges. The study underscores the need for targeted interventions, such as enhanced pedagogical strategies and improved
... Show MoreThe transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.
In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl