Segmentation is one of the most computer vision processes importance, it aims to understand the image contents by partitioning it into segments that are more meaningful and easier to analyze. However, this process comes with a set of challenges including image skew, noise, and object clipping. In this paper, a solution is proposed to address the challenges encountered when using Optical Character Recognition to recognize mathematical expressions. The proposed method involves three stages: pre-processing, segmentation, and post-processing. During pre-processing, the mathematical expression image is transformed into a binary image, noise reduction techniques are applied, image component discontinuities are resolved, and skew correction is performed. Two skew correction methods are proposed: The first method is the Deskewing using iterative PCA, and the second method is the PCA prediction. The line fitting-correction image deskewing and both gave better results than the well-known Hough transformation method. In the segmentation stage, the vertical and horizontal distances between mathematical expression components are utilized to segment the components. Post-processing is employed to reassemble split symbols into a single entity. The proposed method achieves an average detection rate of 97.32%, demonstrating improved recognition outcomes for mathematical expressions.
Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
Arab translators have always paid great attention to the translation of the Persian literary genres, in particular, contemporary Iranian novels. They have always translated for the most prominent Iranian novelists such as Jalal Al Ahmad, Sadiq Hidayat, Mahmoud Dowlatabadi, Bozorg Alavi, Ismail Fasih, Houshang Golshiri, Gholam-Hossein Saedi, Simin Daneshvar, Sadiq Chubak, Samad Behrangi and others that have succeeded in perfectly picturing the Iranian society.
Within the perspectives of Arab translators and by using the descriptive - analytical approach, the present study provides an analytical study of the translation into Arabic some of the modern Persian novels. Moreove
... Show MoreWater balance as a technique is considered one of the means that is relied upon in solving significant hydrological problems. The soil and water assessment tool (SWAT) model was used in this study to assess the water balance in the Wadi Al-Mohammadi basin located at the eastern edge of the Western Desert. Digital elevation model, soil data, Land use - Land cover, and climate data represent the most important requirements for the SWAT model's input as a database. The Wadi Al-Mohammadi basin delineation results show the overall drainage area was 2286.8 km2 with seven sub-basins. The trend line of climate data indicates a clear increase in the total rainfall, relative humidity, temperature, and solar radiation from 1990-
... Show MoreThe Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals th
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show More