In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
Background: While two-thirds of breast cancers express hormone receptors for either estrogen (ER) and/or progesterone (PR) , genetically altered PI3K pathway was found in more than 70% of ER-positive breast cancers.An aberrant activity of cyclin-dependent kinase 1 (CDK1) in a wide variety of human cancers has selectively constituted an attractive pharmacological targets in MYC-dependent human breast cancer cells.
Aim of the study: Role of p110-beta as well as and CDK 1 in the pathogenesis of subset of breast cancers and contribution in their carcinogenesis.
Type of the study: is a retrospective study
Methods: This retr
... Show MoreAn aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical
... Show MoreLet R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
A gamma T_ pure sub-module also the intersection property for gamma T_pure sub-modules have been studied in this action. Different descriptions and discuss some ownership, as Γ-module Z owns the TΓ_pure intersection property if and only if (J2 ΓK ∩ J^2 ΓF)=J^2 Γ(K ∩ F) for each Γ-ideal J and for all TΓ_pure K, and F in Z Q/P is TΓ_pure sub-module in Z/P, if P in Q.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Abstract
Research title: The legal ruling of advice.
This research deals with the topic of advice, as the research included the following:
Preamble: I explained in it the meaning of advice in the Qur’an and Sunnah, and that what is meant by it is a good performance of the duty, then explaining its importance, importing it, and the difference between advice and what is similar to it, from enjoining good, denial, reproach and reprimand, backbiting and the will.
The first topic: It dealt with the ruling on advice, whether it is recommended or disliked, or forbidden, because what is meant by it is to give advice to others may be an obligation in kind, or it may be desirable or dislike
... Show MoreThroughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.