The Turonian-Lower Companian succession at Majnoon Oil Field is represented by the Khasib, Tanuma, and Saadi formations. Four major paleoenvironments were recognized within the studied succession, there are: Shallow open marine environment, shoal environment, deep marine environment, and basinal environment. They reflect deposition on a carbonate platform of homoclinal ramp setting. The studied succession represents two second order supersequences (A) and (B). Supersequence (A) includes both the Khasib and Tanuma formations. The Saadi Formation represents cycle (B). These second order cycles can be divided each into two third order cycles, This subdivision may reflect the effect of eustacy being the major controlling factor of cycles development in the area of very gentle slope and low rate of subsidence. Further subdivision into fourth order cycles may reflect the minor relative sea level fluctuations due to the change in gradient in the vicinity of the shoalbodies where the water depth is lower and sensitive to any subtle changes in relative sea level.
In petroleum industry, the early knowledge of “pore pressure gradient” is the basis in well design and the extraction of these information is more direct when the pore pressure gradient is equal to normal gradient; however, this matter will be more complex if it deviate from that limit which is called “abnormal pore pressure”, if this variable does not put in consideration, then many drilling problems will occur might lead to entire hole loss. To estimate the pore pressure gradient there are several methods, in this study; Eaton method’s is selected to extract the underground pressure program using drilling data (normalized rate of penetration) and logs data (sonic and density log). The results shows that an abnormal high press
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThe gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreMultiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid prope
Oil recovery could be impacted by the relation between vertical permeability (Kv) and horizontal permeability (Kh) (Kv/Kh). 4816 plugs that have been getting hold of 18 wells of Mishrif formation in the West Qurna oilfield were used. Kv/Kh data provided some scatter, but the mean is ~1. Kv/Kh =1 was used for the Petrel model before upscaling according to the heterogeneity of each layer.
Kv/Kh values for Mishrif Formation in West Qurna Oilfield are 0.8 for relatively homogeneous, 0.4 for heterogeneous rock, and 0.1 for cap rocks (CRII).
Eclipse TM was used for reservoir simulation. PVT and SCAL data e
... Show MoreZubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump
... Show MoreReducing global warming potential (GWP) of refrigerants is needed to the decrease of ozone-depleting of refrigeration systems leakages. Refrigerant R1234yf is now used to substitute R134a inside mobile air conditioning systems. Thermodynamic properties of R1234yf are similar to R134a. Also, it has a very low GWP of 4, compared to 1430 for R134a, making it a proper choice for future automobile refrigerants. The purpose of this research is to represent the main operating and performance differences between R1234yf and R134a. Experimental analysis was carried out on the automotive air conditioning system (AACS) with 3 kW nominal capacity, to test and compare the performance of R134a with R1234yf. Experiments were accomplish
... Show More