Most frequently used models for modeling and forecasting periodic climatic time series do not have the capability of handling periodic variability that characterizes it. In this paper, the Fourier Autoregressive model with abilities to analyze periodic variability is implemented. From the results, FAR(1), FAR(2) and FAR(2) models were chosen based on Periodic Autocorrelation function (PeACF) and Periodic Partial Autocorrelation function (PePACF). The coefficients of the tentative model were estimated using a Discrete Fourier transform estimation method. FAR(1) models were chosen as the optimal model based on the smallest values of Periodic Akaike (PAIC) and Bayesian Information criteria (PBIC). The residual of the fitted models was diagnosed to be white noise. The in-sample forecast showed a close reflection of the original rainfall series while the out-sample forecast exhibited a continuous periodic forecast from January 2019 to December 2020 with relatively small values of Periodic Root Mean Square Error (PRMSE), Periodic Mean Absolute Error (PMAE) and Periodic Mean Absolute Percentage Error (PMAPE). The comparison of FAR(1) model forecast with AR(3), ARMA(2,1), ARIMA(2,1,1) and SARIMA( 1,1,1)(1,1,1)12 model forecast indicated that FAR(1) outperformed the other models as it exhibited a continuous periodic forecast. The continuous monthly periodic rainfall forecast indicated that there will be rapid climate change in Nigeria in the coming yearly and Nigerian Government needs to put in place plans to curtail its effects.
Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreIn the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical de
... Show MoreThis study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
tock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.
In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
Some geometric parameters affecting the performance of a wire-plate electrostatic precipitator (ESP) are investigated theoretically. A numerical model was built to investigate the influence of the discharge wire size, wire separation, collector plates spacing, and roughness factor on the ESP performance. The results show that thinner wires emit higher current than larger ones at the same applied voltage, which would be suitable for low voltage power supply to generate the desired current density at the collecting electrodes. The results also show that, as the discharge electrodes get closer, the corona gets suppressed, resulting in a diminished corona current flow. On the other hand, as the distance between elect
... Show MoreLaurylamine hydrochloride CH3(CH2)11 NH3 – Cl has been chosen from cationic surfactants to produce secondary oil using lab. model shown in fig. (1). The relationship between interfacial tension and (temperature, salinity and solution concentration) have been studied as shown in fig. (2, 3, 4) respectively. The optimum values of these three variables are taken (those values that give the lowest interfacial tension). Saturation, permeability and porosity are measured in the lab. The primary oil recovery was displaced by water injection until no more oil can be obtained, then laurylamine chloride is injected as a secondary oil recovery. The total oil recovery is 96.6% or 88.8% of the residual oil has been recovered by this technique as shown
... Show MoreABSTRACT
In this research been to use some of the semi-parametric methods the based on the different function penalty as well as the methods proposed by the researcher because these methods work to estimate and variable selection of significant at once for single index model including (SCAD-NPLS method , the first proposal SCAD-MAVE method , the second proposal ALASSO-MAVE method ) .As it has been using a method simulation time to compare between the semi-parametric estimation method studied , and various simulation experiments to identify the best method based on the comparison criteria (mean squares error(MSE) and average mean squares error (AMSE)).
And the use
... Show MoreThe ground state proton, neutron, and matter density distributions and corresponding root-mean-square (rms) of P19PC exotic nucleus are studied in terms of two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bRcoreR and bRhaloR. According to this model, the core nucleons of P18PC nucleus are assumed to move in the model space of spsdpf. The shell model calculations are carried out for core nucleons with w)20(+ truncations using the realistic WBP
interaction. The outer (halo) neutron in P
19
PC is assumed to move in the pure 2sR1/2R-
orbit. The halo structure in P
19
PC is confirmed with 2sR1/2R-dominant c
In this work, the technique of attenuation of gamma ray to calculate the density of comet nucleus materials (C/2009 P1 (GARRADD) at different range of energy (0.2- 0.9 MeV). also, the single scattering model for gamma rays has been assumed that photons reaching the detector with scattered only once in the material. The program has been designed and written in FORTRAN language (77 – 90) to calculate the density for molecules using Monte Carlo method was used to simulate the scattering and absorption of photons in semi- infinite material. Gamma ray interacts with the matter by three mainly interactions: Photoelectric effect, Compton scattering and Pair production (electron and positron). On the 137Cs source energy (662 keV), Compton scat
... Show More