Let be a ring with identity. Recall that a submodule of a left -module is called strongly essential if for any nonzero subset of , there is such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule of is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules and of that a module has the se-CIP if and only if is strongly essential in implies is strongly essential in . Also, we verify that, a module has the se-CIP if and only if for each se-closed submodule of and for all submodule of , is se-closed in . Finally, some connections and examples are included about (se-CIP)-modules
The trace elements in the medical herbs play an important role in the treatment of diseases. Well selected herbs samples of Iraqi herbs and collected from local markets. In this study, the concentrations of nine elements Na,K, Zn, Fe ,Co ,Cu ,Ni , Pb and Cd were determined in fourteen kinds herbs common belonging to Matricaria Chamomile Cinnamon,Pimpinella Anisum L., Zea Maize , Anethum Graveolens L., Jeft, Teucrium Polium L., Cagsia Italica,Echium Talicum L.,Ocimum Basilcum L., Galeopsis Sejetum,Nigella Sative L., Cyperus Rotundus L.,Lupinus Jaimehintoniana.The herbs samples were analysed by flameless except Na,K, in flame atomic absorption spectrophotometer in different medical herbs.The results indicated that the Na and K
... Show MoreBackground: Multi- drug resistant (MDR) Staphylococcus aureus infections have become a major public health concern in both hospital and community settings.Objective: to investigate the antibacterial activity of T. Foenum- groecum essential oil against skin infection with S. aureus and to study probable synergistic activity in combination with Clindamycin.Type of the study: Cross-sectional study.
Methods: Antibacterial activity of T. Foenum- groecum essential oil extract (1.2gm/100 µl) was investigated in multi- drug resistance (MDR) Staphylococcus aureus specimen isolated from patients with skin infection in Baghdad. T. Foenum- groecum use externally for cellulites and skin inflammation due to the presence of diosgenin .fast liq
... Show MoreLet R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept
In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.